Forpersonaluseonlyinstudyandresearch;mercialuseForpersonaluseonlyinstudyandresearch;mercialuse蒃双曲线的性质膁上海南汇中学顾彦琼芁(一)教学目标羇 ,掌握其范围、对称性、顶点、 、实轴、虚轴、渐近线等概念,以及、、 、诱导,让学生明确双曲线性质的研究过程和研究方法,培养学生类比、分析、归纳、猜想、概括、,猜测,证明并探索新知识,培养学生学习数学的兴趣,:通过方程研究双曲线的几何性质薅教学难点:双曲线的渐近线证明蚁(二)教学过程膀从图象直观猜测双曲线的几何性质,并利用方程进一步证明研究,得到其对称性,顶点以及范围。由画图问题引出双曲线的渐近线:蒈羅通过对具体方程分析得到渐近线概念以及其渐近线方程莂从特殊到一般,得到焦点在x轴上的双曲线的渐近线方程,并由类比膁得到焦点在y轴上的双曲线的渐近线方程薆蒄肂羈罿袄小结袃肀肇作业书本116页1,2,3,4芃薃(三)教学分析:从双曲线定义出发,引导学生由方程研究双曲线的几何性质。先给出特殊双曲线的方程,根据对称性只需先在第一象限作图,列表描点,得到矛盾,再由方程入手,发现双曲线的走向与一条直线越来越接近,但是永远不相交,引出渐近线概念。从特殊到一般,由学生猜测,证明,并类比到焦点在y轴上的双曲线的渐近线方程。证明过程由我引导为主。通过例题以及练习,巩固本节课内容。以下无正文仅供个人用于学习、研究;不得用于商业用途。Forpersonaluseonlyinstudyandresearch;、研究;不得用于商业用途。NurfürdenpersönlichenfürStudien,Forschung,'étudeetlarechercheuniquementàdesfinspersonnelles;、研究;不得用于商业用途。 толькодлялюдей,которыеиспользуютсядл
双曲线的性质 来自淘豆网m.daumloan.com转载请标明出处.