伯努利效应伯努利效应 Bernoullieffect简介 1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,流速与压强的关系:流体的流速越大,压强越小;流体的流速越小,压强越大。比如,管道内有一稳定流动的流体,在管道不同截面处的竖直开口细管内的液柱的高度不同,表明在稳定流动中,流速大的地方压强小,流速小的地方压强大。这一现象称为“伯努利效应”。伯努力方程:p+1/2pv^2=常量。在列车站台上都划有安全线。这是由于列车高速驶来时,靠近列车车厢的空气将被带动而运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后出现明显压强差,将使旅客被吸向列车而受伤害。伯努力效应的应用举例:飞机机翼、喷雾器、汽油发动机的汽化器、球类比赛中的旋转球。相关举例乒乓球的上旋邓亚萍和她的队友乔红在第43届世乒赛上的一场争夺战,真可谓是速度和力量的化身。她们凶猛地抽杀推挡,把个小球变成了一道道银色的电弧,直看得人们眼花缭乱,叹为观止。人们可曾知道,在她们不断加大攻球的速度和力量时,那一个个击出去的球都带着上旋? 乒乓球运动中的攻球,:挥拍过猛,球会不着台面飞出界外;如果因此而不适当地压低弧线高度,,所谓攻球的威胁也就成了水中月、,可以携裹着强劲的力量和速度杀向对方,又能缩短打出的距离、增加乒乓球飞行弧线的高度?有,这就是带上旋的攻球. 乒乓球的上旋,会使球体表面的空气形成一个环流,环流的方向与球的上旋方向一致。这时,球体还在向前飞行,所以它同时又受到了空气的阻力。环流在球体上部的方向与空气阻力相反,在球体下部的方向与空气阻力一致,所以,球体上部空气的流速慢,,流速快的压强小,这样就使球体得到了一个向下的力,这个力又让球得到了一个加速度。我们把球体向前上方的运动看作是这样两个运动的合成:一个是沿水平方向的匀速直线运动,另一个是竖直上抛运动,,并把计算结果在座标中画出来,就会联结出一个具有一定弯曲度的弧线,这就是上旋,能增大乒乓球飞行弧线的弯曲程度,也就是被运动员用来增加保险系数的弧度。上旋的利用,,以2:0轻取1993年世界杯男单冠军普里莫拉茨,第2局的比分是21:,又以3:,因为弧圈球的上旋力非常强。法国埃卢瓦凌厉的两面弧圈技术,使他得以在乒坛上称霸一方。帆船前行的原理人们通常认为帆船只能沿风吹动的方向移动,即顺风移动。但三角帆使帆船还能够迎着风移动(逆风移动)。在理解如何逆风移动之前,我们首先需要了解一些与船帆有关的知识。船帆的最先着风之帆缘称作前缘,,并且从弦到最大吃水点的垂直距离称作弦
伯努利效应 来自淘豆网m.daumloan.com转载请标明出处.