正十七边形历史为最早的十七边形画法创造人为:高斯。高斯(1777─1855年)德国数学家、,就学会了算术,,,,,:步骤一给一圆O,作两垂直的半径OA、OB,作C点使OC=1/4OB,作D点使∠OCD=1/4∠OCA作AO延长线上E点使得∠DCE=45度 正十七边形尺规作图[1]步骤二作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。步骤三过G4作OA垂直线交圆O于P4,过G6作OA垂直线交圆O于P6,则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。历史最早的十七边形画法创造人为高斯。高斯(1777~1855年),德国数学家、物理学家和天文学家。在童年时代就表现出非凡的数学天才。三岁学会算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩。1799年以代数基本定理的四个漂亮证明获得博士学位。高斯的数学成就遍及各个领域,其中许多都有着划时代的意义。同时,高斯在天文学、大地测量学和磁学的研究中也都有杰出的贡献。1801年,高斯证明:如果k是质数的费马数,那么就可以用直尺和圆规将圆周k等分。高斯本人就是根据这个定理作出了正十七边形,解决了两千年来悬而未决的难题。当时,如果高斯的老师告诉了高斯这是道2000多年没人解答出来的题目,高斯就不会画出这个正十七边形。这说明了你不怕困难,困难就会被攻克,当你惧怕困难,你就不会胜利。正十七边形的证明方法正十七边形的尺规作图存在之证明:设正17边形中心角为a,则17a=360°,即16a=360°-a故sin16a=-sina,而sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a因sina不等于0,两边除之有:16cosacos2acos4acos8a=-1又由2cosacos2a=cosa+cos3a等,有2(cosa+cos2a+…+cos8a)=-1注意到cos15a=cos2a,cos12a=cos5a,令x=cosa+cos2a+cos4a+cos8ay=cos3a+cos5a+cos6a+cos7a有:x+y=-1/2又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)经计算知xy=-1又有x=(-1+√17)/4,y=(-1-√17)/4其次再设:x1=cosa+cos4a,x2=cos2a+cos8ay1=cos3a+cos5a,y2=cos6a+cos7a故有x1+x2=(-1+√17)/4y1+y2=(-1-√17)
正十七边形画法 来自淘豆网m.daumloan.com转载请标明出处.