2013学年普陀区九年级期终调研数学试卷
(测试时间:100分钟,满分:150分)
考生注意:
,,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
.
一、选择题:(本大题共6题,每题4分,满分24分)
,应该属于( )
.平移变换; .相似变换; .对称变换; .旋转变换.
:38000的黄浦江交通游览图上,某隧道长约7,它的实际长度约为( )
.; .; .; .266.
△中,,,那么△是( )
.钝角三角形; .直角三角形; .锐角三角形; .等腰三角形.
( )
.第一象限; .第二象限; .第三象限; .第四象限.
,正确的是( )
.如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边;
.不同向量的单位向量的长度都相等,方向也都相同;
.相似三角形的中线的比等于相似比;
.一般来说,一条线段的黄金分割点有两个.
△中,90°,,,那么下面各式正确的是( )
.; .; .; ..
二、填空题:(本大题共12题,每题4分,满分48分)
,直线∥∥,,,那么的值是.
,水平高度升高了3米,则坡度.
.
,且在对称轴左侧部分是上升的抛物线的表达式可以是.
、是△的边和的中点,,,那么.
,在边长为1的正方形网格中有点、、、,则图中所形成的三角形中,相似的三角形是
.
,且60°,则.
,化简: .[来源:学科网ZXXK]
,那么它的重心与外心之间的距离为.
,并且经过平移后能与抛物线重合,那么这个二次函数的解析式是.
,则此三角形的周长为.
,∥,,,,是锐角,的正弦值为,那么的长为.
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)
计算:.
20.(本题满分10分)
已知:如图,△中,点是边上的一点,且:2:1.
(1)设,,先化简,再求作:;
(2)用(、为实数)的形式表示.
[来源:]
21.(本题满分10分)
如图,在△中,,,点是△内一点,且.
(1)求证:△∽△;
(2)试求的值.
22.(本题满分10分)
如图,浦西对岸的高楼,在处测得楼顶的仰角为30°,向高楼前进100米到达处,在处测得的仰角为45°,求高楼的高.
23.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)[来源:学科网ZXXK]
如图,已知是△中的角平分线,是上的一点,且,,.
(1)求证:△∽△;
(2)求证:△∽△;
(3)求的长.
24.(本题满分12分,其中第(1)小题3分,第(2)小题9分)
如图,抛物线经过点,且与轴交于点、点,若.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为,点是线段上一动点(不与点重合),,射线与线段交于点,当△为等腰三角形时,求点的坐标.
25.(本题满分14分,其中第(1)小题5分,第(2)小题7分,第(3)小题2分)
如图,在正方形中,,点是边上的任意一点,是延长线上一点,联结,作交的平分线上一点,联结交边于点.
(1)求证:;
(2)设点到点的距离为,线段的长为,试求关于的函数关系式,并写出自变量的取值范围;[来源:学科网ZXXK]
(3)当点是线段延长线上一动点,那么(2)式中与的函数关系式保持不变吗?如改变,试直接写出函数关系式.
参考答案
一、选择题:
⑴
⑵
⑶
⑷
⑸(正确的是:如果果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
正确的是:不同向量的单位向量的长度不一定相等,方向也不一定相同
正确的是:相似三角形的对应中线的比等于相似比)
⑹
[来源:Z,xx,]
二、填空题
⑺
⑻
⑼(由于关于轴对称,则不变,变为代入)
⑽等(满足①直线为对称轴②开口向下即可)
⑾
⑿
⒀()
⒁()
⒂
⒃(平移重合与重合,说明是相同的,根据顶点式即可)
⒄或或(若一个三角形的边长均满足,①2,2,
上海市普陀区2014年数学一模考试试题及答案 来自淘豆网m.daumloan.com转载请标明出处.