下载此文档

8.3 时间序列的协整和误差修正模型_.ppt


文档分类:论文 | 页数:约34页 举报非法文档有奖
1/34
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/34 下载此文档
文档列表 文档介绍
§ 协整与误差修正模型 Cointegration and Error Correction Model
一、长期均衡与协整分析
二、协整检验
三、误差修正模型
一、长期均衡与协整分析 Equilibrium and Cointegration
1、问题的提出
经典回归模型(classical regression model)是建立在平稳数据变量基础上的,对于非平稳变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。
由于许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。
但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。
例如,中与人均GDP变量的例子, 从经济理论上说,人均GDP决定着居民人均消费水平,它们之间有着长期的稳定关系,即它们之间是协整的。
经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
假设X与Y间的长期“均衡关系”由式描述
2、长期均衡
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。
在t-1期末,存在下述三种情形之一:
Y等于它的均衡值:Yt-1= 0+1Xt ;
Y小于它的均衡值:Yt-1< 0+1Xt ;
Y大于它的均衡值:Yt-1> 0+1Xt ;
在时期t,假设X有一个变化量Xt,如果变量X与Y在时期t与t-1末期仍满足它们间的长期均衡关系,即上述第一种情况,则Y的相应变化量为:
vt=t-t-1
如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则t期末Y的变化往往会比第一种情形下Y的变化大一些;
反之,如果t-1期末Y的值大于其均衡值,则t期末Y的变化往往会小于第一种情形下的Yt 。
可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。
一个重要的假设就是:随机扰动项t必须是平稳序列。如果t有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。
式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibrium error),它是变量X与Y的一个线性组合:
如果X与Y间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。
非稳定的时间序列,它们的线性组合也可能成为平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量=(1,2,…,k),使得Zt=XT ~ I(d-b),
其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列{X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b),为协整向量(cointegrated vector)。
如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。
3个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。
(d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。
例如,中国CPC和GDPPC,它们各自都是2阶单整,如果它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型是合理的。
尽管两个时间序列是非平稳的,也可以用经典的回归分析方法建立回归模型。

8.3 时间序列的协整和误差修正模型_ 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数34
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zhangbing32159
  • 文件大小0 KB
  • 时间2014-01-29