-直接开平方法(直接开方法)(直接开方法)教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,“降次”──转化的数学思想,,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)、复习引入学生活动:(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______),在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题1:根据完全平方公式可得:(1)164;(2)42;(3)():设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x·2x=8x2=8根据平方根的意义,得x=±2即x1=2,x2=-2可以验证,2和-2都是方程x·2x=8的两根,△、探索新知上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±2即2t+1=2,2t+1=-2方程的两根为t1=-,t2=--例1:解方程:x2+4x+4=1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-,:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=(1+x)2=,得1+x=±+x=,1+x=-,方程的两根是x1==20%,x2=-,因此,x2=-,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、、,,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x):设该公司二、+(1+x)+(1+x)2=(1+x)当成一个数,配方得:(1+x+)2=,即(x+)2=+=±,即x+=,x+=-=10%,x2=-,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,、、:一、-4x+p=(x+q)2,那么p、q的值分别是().=4,q==4,q=-=-4,q==-4,q=-+9=0的根为()..-3C.±-x+1=0正确的解法是().A.(x-)2=,x=±B.(x-)2=-,原方程无解C.(x-)2=,x1=+,x2=D.(x-)2=1,x1=,x2=-二、-16=0,
22.2-直接开平方法(直接开方法) 来自淘豆网m.daumloan.com转载请标明出处.