下载此文档

导数的四则运算法则.doc


文档分类:高等教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
导数的四则运算法则————————————————————————————————作者:————————————————————————————————日期: §4导数的四则运算法则主讲:陈晓林时间:2012-2-23一、教学目标:、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。(x)=x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。二、教学重点:函数和、差、积、商导数公式的发掘与应用教学难点:导数四则运算法则的证明三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:导函数的概念和导数公式表。:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,:是曲线上点()处的切线的斜率因此,如果在点可导,则曲线在点()(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数,:(1)求函数的改变量(2)求平均变化率(3)取极限,得导数=:;(二)、探析新课两个函数和(差)的导数等于这两个函数导数的和(差),即证明:令,,∴,:求下列函数的导数:(1);(2);(3);(4)。解:(1)。(2)。(3)。例2:求曲线上点(1,0)处的切线方程。解:。将代入导函数得。即曲线上点(1,0)处的切线斜率为4,从而其切线方程为,即。设函数在处的导数为,。我们来求在处的导数。令,由于知在处的导数值为。因此的导数为。一般地,若两个函数和的导数分别是和,我们有特别地,当时,有例3:求下列函数的导数:(1);(2);(3)。解:(1);(2);(3)。例4:求下列函数的

导数的四则运算法则 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人luciferios04
  • 文件大小344 KB
  • 时间2019-10-05