(Back-work,简称BP网络)是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络权值的调整采用反向传播(Back-propagation)的学习算法它是一种多层前向反馈神经网络,其神经元的变换函数是S型函数输出量为0到1之间的连续量,它可实现从输入到输出的任意的非线性映射在人工神经网络的实际应用中,BP网络广泛应用于函数逼近、模式识别/分类、数据压缩等,80%~90%的人工神经网络模型是采用BP网络或它的变化形式,它也是前馈网络的核心部分,体现了人工神经网络最精华的部分。其主要思想是从后向前(反向)逐层传播输出层的误差,以间接计算出隐层误差。算法分为两个部分:第一部分(正向传播过程)输入信息从输入层经隐层逐层计算各单元的输出值;第二部分(反向传播过程)输出误差逐层向前计算出隐层各单元的误差,并用此误差修正前层权值。,除了在多层网络上与其他的模型有不同外,其主要差别也表现在激活函数上。BP网络的激活函数必须是处处可微的,因此它不能采用二值型的阀值函数{0,1}或符号函数{-1,1},能较好地拟合非线性系统的输入与输出关系。BP网络学习规则的指导思想是:对网络权值和阈值的修正要沿着表现函数下降最快的方向——负梯度方向。其中xk是当前的权值和阈值矩阵,gk是当前表现函数的梯度,ak是学习速率。,输入神经元有r个,隐含层内有s1个神经元,激活函数为F1,输出层内有s2个神经元,对应的激活函数为F2,输出为A,
基于神经网络的数据分类 来自淘豆网m.daumloan.com转载请标明出处.