--------------------------校验:_____________-----------------------日期:_____________高等数学极限方法总结摘要:数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,:高等数学、数列极限、定义、洛比达法则、英文题目LimitmethodssummarizeAbstract:Themethodofsequencelimithasbeenintheseriesamoreimportantproblems,:Highermathematics,sequencelimit,definition,losthanamountingtolaw,,特别是极限,原因就是后续章节本质上都是极限。一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。树没有根,活不下去,没有皮,只能枯萎,可见极限的重要性。极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。、:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;;;等等(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。,都存在,极限值分别为A,B,则下面极限都存在,且有(1)(2)(3)说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。(1)(2);说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式.(2)一定注意两个重要极限成立的条件。一定注意两个重要极限成立的条件。例如:,,;等等。(即极限是0)。定理3当时,下列函数都是无穷小(即极限是0),且相互等价,即有:~~~~~~。说明:当上面每个函数中的自变量x换成时(),仍有上面的等价关系成立,例如:当时,~;~。定理4如果函数都是时的无穷小,且~,~,则当存在时,也存在且等于,即=。(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大;(2)和都可导,且的导数不为0;(3)存在(或是无穷大);则极限也一定存在,且等于,即=。说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。,即如果是函数的定义去间内的一点,则有。(准则1)单调有界数列必有极限。定理8(准则2)已知为三个数列,且满足:(1)(2),则极限一定存在,且极限值也是a,即。二、求极限方法举例利用函数的连续性(定理6)求极限例4解:因为是函数的一个连续点,所以原式=。利用两个重要极限求极限例5解:原式=。注:本题也可以用洛比达法则。例6解:原式=。例7解:原式=。注:两个重要的极限分别为limsinx12=1和lim(1+)x=e,对第一个而言是x→0x→∞xxX趋近0时候的sinx与x比值。第2个实际上如果x趋近无穷大和无穷小都有对有对应的形式。当底数是1的时候要特别注意可能是用第2个重要极限。利用定理2求极限例8解:原式=0(定理2的结果)。利用等价无穷小代换(定理4)求极限这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价
高等数学极限方法总结 来自淘豆网m.daumloan.com转载请标明出处.