摘要 I摘 要胶体晶体是指亚微米级的单分散胶体微球在合适的条件下自发形成的三维有序周期阵列结构。光子晶体研究的兴起推动了胶体晶体的发展,作为一种制备光子晶体的化学方法,胶体自组装方法具有设备简单、经济、制备周期短等潜在优势,被认为是制备近红外及可见光波段三维光子晶体较有效的方法。近年来,采用胶体自组装方法制备光子晶体的诸多报道中,大多数只是涉及到关于胶体自组装的基础工艺与理论的探讨,而关于胶体晶体具体的应用研究和相关制备工艺的研究较少。本文主要研究了胶体晶体光纤微结构的制备工艺及其表征技术。将自组装胶体晶体技术引入到光纤上,通过特定的方式将胶体晶体和光纤结构融合,封装成具有新颖光学特性和光子带隙特征的胶体微结构光纤。研究了大尺寸二氧化硅粒子组装的胶体光子晶体的制备及表征。采用垂直沉积法制备胶体晶体,讨论了垂直沉积法中胶体微球自组装的动力学机理。通过选择微球尺寸,使其禁带处于光通信波段。通过不同参数对比实验获得了制备通信波段禁带光子晶体的最优参数,实验证明了加热使溶液对流的方法可以有效的减小大直径胶体微球的沉淀速度,有助于微球在竖直基片上的淀积自组装。为将胶体晶体应用到光纤通信中进行了必要的实验准备。研究了光纤裸纤表面自组装胶体晶体的制作及测试。采用垂直沉积法在光纤裸纤表面制作胶体晶体包层,通过扫描电子显微镜对其形貌进行表征。分析了衬底光纤半径、溶液蒸发速度等实验参数对胶体包层晶体结构的影响,为形成具有完全光子带隙的三维光子晶体光纤原型的制作进行了初步的尝试。研究了毛细管内蒸发诱导的溶液微流驱动的自组装胶体晶体。在光纤对接用毛细玻璃管(内径为126-127um)内自组装胶体晶体,然后将毛细玻璃管与光纤对接,采用热缩套管对其进行封装加固。采用光学显微镜和扫描电子显微镜对晶体样品微观形貌进行表征。实验结果表明胶体自组装排列高度有序,结构,其[111]晶轴沿毛细管轴向。关键词:胶体晶体, 光子晶体,光纤微结构,光子带隙,自组装Abstract IIAbstract Colloidal crystals are self-assembled three-dimensional periodic matrix formed from monodisperse colloidal spheres of sub-micrometer size, under suitable ambient emergence of photonic crystal promotesthe study of colloidal crystal. As a chemical way to fabricate photonic crystal, colloidal crystal has the distinct advantages of simple setup, cost-effective and short fabrication period. Besides, it is regarded as the most effective way to fabricate photonic crystal whose PBG (photonic band gap) locates in near-infrared and visible light band. In recent years, considerable studies have been carried out on fabrication procedure, mechanism of self-assembly and related theories. However, these studies paid little attention to application of colloidal crystal and its fabrication technique. This paper focuses on the fabrication and characterization ofcolloidal crystal fiber microstructure. Introducing the self-assembled colloidal crystal to fiber, combining fiber and colloidal crystal with specified procedure, we package it to form a novel type of colloidal crystal fiber. Fabrication and characterization of large size silica spher
胶体晶体光纤微结构的制备及其表征技术 来自淘豆网m.daumloan.com转载请标明出处.