下载此文档

求解数列通项公式的常用方法.doc


文档分类:高等教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
求解数列通项公式的常用方法。观察法例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2)(3)(4)解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:(2)(3)(4).观察各项的特点,关键是找出各项与项数n的关系。二、定义法例2:已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),(1)求数列{an}和{bn}的通项公式;解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,∴a3-a1=d2-(d-2)2=2d,∴d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,∴=q2,由q∈R,且q≠1,得q=-2,∴bn=b·qn-1=4·(-2)n-1当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。三、      叠加法例3:已知数列6,9,14,21,30,…求此数列的一个通项。解易知∵……各式相加得∴一般地,对于型如类的通项公式,只要能进行求和,则宜采用此方法求解。四、叠乘法例4:在数列{}中,=1,(n+1)·=n·,求的表达式。解:由(n+1)·=n·得,=··…=所以一般地,对于型如=(n)·类的通项公式,当的值可以求得时,宜采用此方法。五、公式法若已知数列的前项和与的关系,求数列的通项可用公式求解。例5:已知下列两数列的前n项和sn的公式,求的通项公式。(1)。(2)解:(1)===3此时,。∴=3为所求数列的通项公式。(2),当时由于不适合于此等式。∴注意要先分n=1和两种情况分别进行运算,然后验证能否统一。=1,前n项和Sn满足关系求证:数列是等比数列。解析:因为所以所以,数列是等比数列。六、,其中b是与n无关的常数,且。求出用n和b表示的an的关系式。解析:首先由公式:得:利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即其和为。七、待定系数法例8:设数列的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,解:设点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列为等差数列:则,(b、c为常数),若数列为等比数列,则,。辅助数列法有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。,,,,求。解析:在两边减去,得∴是以为首项,以为公比的等比数列,∴,由累加法得==…===,且(),证明:对任意n≥1,证明:设,用代入可得∴是公比为,首项为的等比数列,∴(),即:型如an+1=pan+f(n)(p为常数且p≠0,p≠1)可用转化为等比数列等.(1)f(n)=q(q为常数),可转化为an+1+k=p(an+k),得{an+k}是以a1+k为首项,p为公比的等比数列。例11:已知数的递推关系为,且求通项。解:∵∴令则辅助数列是公比为2的等比数列∴即∴例12:已知数列

求解数列通项公式的常用方法 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xzh051230
  • 文件大小655 KB
  • 时间2020-02-22
最近更新