精选五道趣味题解第1题:面积无穷大的墙可用有限体积的油漆涂满。证明:在从1到正无穷的区间上考查曲线1/x。由基础微积分知识可知,将该曲线绕x轴旋转所围体积有限(等于Pi),而该曲线与x轴所夹面积为无穷大。问题:看起来很合算哪——随便一点点油漆就可以把陋室装扮一新,还有富余;而余下的总也用不完!真是这样吗? 第2题:一种化学元素碘-131的质量呈指数衰减,其半衰期为8天。今天我们手中若有1克碘-131,其2年前的质量大约是多少? 答案:约为3*1027克。问题:想想我们居住的地球,它的质量约是6*1027克。也就是说,!不得了,2年前的今日我正泛舟西湖,没觉得彼时天地与此时竟有这般大的不同?而今日世界上存在的碘-131当不只1克。这是怎么回事? 第3题:我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。每间住了人的客房每日所需服务、维修等项支出共计40元。问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入;扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。第4题:你现在是不是正坐在某个房间里的计算机前,一不小心掉进了这个数学世界?听我说,你可能永远都走不出这个房间去!大约二千三百年前,希腊的一位哲人Zeno(季诺)给出如下证明。证明:一个人要想走到门前去,就必须先走过从脚下到房门之间的距离的一半,然后还必须走过剩下的距离的一半,再走过剩下的距离的一半,......以此类推。因为距离无论多么小,总可以无限细分下去,这个过程就必须进行无穷多次,
小学数学数学故事精选五道趣味题解 来自淘豆网m.daumloan.com转载请标明出处.