下载此文档

多元回归分析的步骤.docx


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
三、研究方法本文采取多元线性回归的方法来设定并建立模型,再利用逐步回归来对变量予以确认和剔除。逐步回归是通过筛选,挑选偏回归平方和贡献最大的因子建立回归方程,在决定是否引入一个新的因素时,回归方程要用方差比进行显着性检验。如果判别该影响因子通过显着性检验,那么可选入方程中,否则就不应该进入到回归方程,回归方程中剔除一个变量的标准也是用方差比进行显着性检验剔除偏回归平方和贡献最小的变量,无论是入选回归方程还是从回归方程中剔除符合条件的选入项和剔除项为止,逐步回归的方法剔除了对因变量影响小的因素减小了分析问题的难度,提高了计算效率和回归方程的稳定性有较好的预测精度。运用多元线性回归预测的基本思路是在确定因变量和多个自变量以及它们之间的关系后,通过设定自变量参数的回归方程对因变量进行预测。具体如下:式中:Y表示为粮食总产量,C和a为回归系数,C、a是待定参数,、消去法、向前选择法、向后剔除法和逐步进入法等,,对选择的自变量全部进入回归模型,即强行进入法进行预测。该模型的优点是方法简单、预测速度快、外推性好等。四、分析与结果本文选取6个解释变量,研究河南省粮食产量y,解释变量为:X1粮食播种面积,X2农业从业人,X3农用机械总动力,X4农田有效灌溉面积,X5化肥施用折纯量,X6农村用电量。以河南省粮食产量为因变量,以如上6个解释变量为自变量做多元线性回归(数据选取2014年《河南统计年鉴》,见附录一)。用SPSS做变量的相关分析,从相关矩阵(表4-1),说明所选择变量与y高度线性相关,用y与自变量做多元线性回归是合适的。表4-(表4-2)表4-2系数B标准错误BetaT显着性(常数)---.-.607-(表4-2)中可以得到解释变量与因变量之间的方程为:表4-(表4-3)中发现F=,说明6个自变量整体对因变量y产生显着线性影响。但从表(4-2)中不难发现农业从业人员、农田有效灌溉面积、农村用电量的P值较大,说明方程某些解释变量并不显着,对没有通过检验的回归系数,在一定程度上说明他们对应的自变量在方程中可有可无,一般为了使模型

多元回归分析的步骤 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人文库旗舰店
  • 文件大小26 KB
  • 时间2020-03-26