利用一题多解培养学生的“立体思维模式”一题多题是学生产生浓厚兴趣的基础,也是培养锻炼学生思维能力的重要源泉,下面我们就来举一题多解的例子。,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。÷3×2+=(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:÷3×(3+2)=(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:×2-÷3=(千米)。其中,×2,表示行驶6小时的千米数,÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶的千米数了。这便是一种创新的解法。从以上所谈的这些看来,二者有一个共同点。思维能力的培养是伴随着兴趣的产生的,而浓厚的兴趣是靠着反映敏捷的思维作铺垫的。两者之间一种无意识的连接关系,是一同成长的。所以在教学中不能只重视激发兴趣,也不能只重视思维能力的培养。应该着眼于两者之间的内在联系。兴趣是思维发展的平台,思维是兴趣的基础,兴趣不是天生的,而是在思维潜意识中某些问题的探索而产生的结果。因此,在数学教学中,教师要特别注意培养学生根据题目中的具体条件,自觉灵活地运用数学方法,通过变换角度思考问题。这样,就可以发现新方法,制定新策略,长期坚持这样的方祛训练,学生一定能声生浓厚的学习数学、运用数学的兴趣。
立体思维 来自淘豆网m.daumloan.com转载请标明出处.