《充分条件、必要条件》教学反思《充分条件、必要条件》教学反思长期以来,由于受应试教育的影响,不少教师在教学中重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个形式而已,认为概念教学只要对概念作简单介绍就好,根本可以忽视概念的形成过程。数学教学的目的只要还是让学生记忆公式,然后模仿例题进行解题。事实上,像函数、充分条件等好多数学概念,概念本身及其形成过程的本质就是一种数学观念、一种数学方法。下面我就针对跟岗期间所上的一节汇报课——《充分条件、必要条件》,谈谈我的一些教学体会。一、在体验数学概念形成的过程中认识概念在引导学生形成数学概念、提炼概念中要注意贯彻“从具体到抽象”的原则,注重“体验过程的直观性、定义提炼的概括性、语言阐述的严谨性”。本节课首先给出两个“若p(条件),则q(结论)。”形式的命题:(1)若xa+b,则x2ab;(2)若ab=0,则a=0。从原命题的真假,引导学生分析p对q的制约程度,从而得到充分条件的概念;从逆命题的真假角度看p对q的依赖程度,从而得到必要条件的概念。再提问学生,引导学生根据上述的分析过程逐步归纳完善定义。之后,从集合之间的包含关系这个角度来阐述理解充分条件、必要条件的概念,充分挖掘出概念的内涵和外延,进一步地帮助学生对概念的理解。二、在运用数学概念解决问题的过程中巩固概念数学概念形成后,通过具体例子,进一步认识概念,引导学生利用概念解决数学问题和发展概念在解决问题中的作用,是数学概念教学的一个重要环节。此环节操作成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成。本节课设置了一系列“若p,则q”的命题,通过师生互动,让学生分别判断p是q的什么条件?q是p的什么条件?在这个过程中不断强调解决这个问题的关键是先分清出条件和结论,以及突出“p是q的什么条件”和“p的什么条件是q”两种问法的区别,前者p是是条件,后者q是条件。学生通过对一系列问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇以及探索
《充分条件、必要条件》教学反思 来自淘豆网m.daumloan.com转载请标明出处.