:化为两次定积分oxyabcd分别用平行于x轴和y轴的直线对区域进行分割,如图。ΔxΔyΔσ可见,除边缘外,其余均为矩形,其面积为可以证明:其中dxdy称为面积元素。(1)当积分区域为以下均设函数且在D上连续。如图所示:oxyabDoxyabzD相应的曲顶柱体如右图。[a,b]内任取一点x,过此点作与yoz面平行的平面,它与曲顶柱体相交得到一个一个曲边梯形:底为高为x其面积为所以根据平行截面面积为已知的立体的立体公式,,得二重积分的计算公式:类似地,若积分区域为如右图所示,:二重积分的计算就是转化为二次定积分,显然,确定积分次序和积分上、下限是关键。这主要由积分区域D所确定。所谓先积线,后积点以第一种情况为例加以说明:如图:oxyabDx区间[a,b]是x的取值范围。在此区间内任取一点x,过该点自下而上作一条平行于y轴的射线,先穿过的边界是y的积分下限,。第二种情形可同理讨论。对于其他情形,都可化为这两种情况加以转化。如下图:。不妨用两种情形分别进行计算,加以比较。法一先y后x。解:积分区域D如图。1oxyD将积分区域投影到x轴上,得到x的范围[0,1].在[0,1]上任取一点x,过该点作一条平行于y轴的射线,x先穿过的边界作y的积分下限,后穿过的边界作y的上限,,得到y的范围[0,1].1在[0,1]上任取一点y,过该点作一条平行于x轴的射线,y则先穿过的边界为x的下限,后穿过的边界为x的上限,:在二重积分的计算中,有时积分次序的选择显得相当重要,因而具体计算时,应注意观察积分区域的特征和被积函数的特点,选择恰当的积分次序,以便使计算尽可能简单。10.
高等数学二重积分详解ppt课件 来自淘豆网m.daumloan.com转载请标明出处.