题目设定是这样的,一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛。这个岛有三个奇怪的规则。,不能看自己眼睛的颜色。。,他就必须在当天夜里自杀。某天,有个旅行者到了这个岛上。由于不知道这里的规矩,所以他在和全岛人一起狂欢的时候,不留神就说了一句话:【你们这里有红眼睛的人。】最后的问题是:假设这个岛上的人足够聪明,每个人都可以做出缜密的逻辑推理。请问这个岛上将会发生什么?此问题的第一个答案是用数学归纳法得出的:如果这个岛上有N个红眼睛,那么在旅行者说这句话的第N天,他们全部都会自杀。具体到本题则是,在第5天,这个岛上的5个红眼睛会全部自杀。证明过程如下:如果这个岛上只有1个红眼睛,其他人都是蓝眼睛。那么,当旅行者说了这句话之后,此人立刻就会知道自己是红眼睛,他就会在当天自杀。即,当n取第一个值n0=1时,命题成立。假设当这个岛上有N个红眼睛的时候,在旅行者说了这句话之后的第N天,这些红眼睛会全部自杀。那么,当这个岛上有N+1个红眼睛的时候,在每个红眼睛看来,岛上都确定有N个红眼睛,并等待着他们在第N天自杀。而在第N天,大家都没有自杀。所以一到第N+1天,每个红眼睛都明白了这个岛上还有第N+1个红眼睛——他自己。于是大家都在第N+1天自杀了。所以命题得证:如果这个岛上有N个红眼睛,那么在旅行者说这句话的第N天,他们全部都会自杀。当岛上只有一个红眼睛的时候,在旅行者说完这句话的当天,他就会自杀。这个无疑。当岛上有两个红眼睛的时候。在旅行者说完这句话的当天,这两个红眼睛都在等着对方自杀,但对方却没有自杀。于是在第二天他们立刻明白了自己也是红眼睛,于是在第二天一起自杀了。以此往下推理,当岛上有三个红眼睛的时候。旅行者说完这句话,每个红眼睛都在等着第二天另外两个红眼睛集体自杀,但他们没有自杀。所以到了第三天,大家都明白了自己也是红眼睛,就一起自杀了。如此类推下去。就得出了命题:如果岛上有N个红眼睛,那么在旅行者说完这句话后的第N天,这个N个红眼睛会一起自杀。具体到本题就是,到了第五天,这五个红眼睛一起自杀。以上证明看起来非常美妙。可是。哲轩说,这个旅行者事实上讲了一句废话,没有带来任何新的信息。因为这岛上有95个蓝眼睛,5个红眼睛。每个人都知道这岛上有红眼睛的人。无非是蓝眼睛的人看到有5个红眼睛,红眼睛的人看到有4个红眼睛而已。旅行者说的那句【岛上有红眼睛的人】,没有输入任何新的信息,他说的就是岛上的人每天都看到的景象。所以哪怕岛上的人思维再缜密严谨,也不会有任何自杀的情况发生。到底是什么情况呢?以下各楼回答==【1】「游客没有输入任何新的信息」这个断言是错的。N=1的情形不必说了,显然输入了新信息。对于N>1的情形,要注意,游客必须是当着所有人的面公开做出宣告,如果他是私下分别对每个人说的,就不会起任何作用。「公开宣告」这一举动的意义不是让每个人都知道「岛上有红眼睛」,而是让每个人都知道「每个人都知道每个人都知道……每个人都知道岛上有红眼睛」。在游客公开宣告之前,岛上的人是不可能具有这个多阶知识的,这就是游客输入的新信息。以N=2为例,公开宣告之后,红1立刻获得了一个新的2阶知识:「红2知道岛上有红眼睛」,在公开宣告之前,他没有能力判断这个2阶命题的真假,因为在这之前命
红蓝眼睛逻辑推理 来自淘豆网m.daumloan.com转载请标明出处.