(三)平行四边形
3.平行四边形的性质:
因为ABCD是平行四边形Þ
几何表达式举例:
(1) ∵ABCD是平行四边形
∴AB∥CD AD∥BC
(2) ∵ABCD是平行四边形
∴AB=CD AD=BC
(3) ∵ABCD是平行四边形
∴∠ABC=∠ADC
∠DAB=∠BCD
(4) ∵ABCD是平行四边形
∴OA=OC OB=OD
(5) ∵ABCD是平行四边形
∴∠CDA+∠BAD=180°
:
。
几何表达式举例:
(1) ∵AB∥CD AD∥BC
∴四边形ABCD是平行四边形
(2) ∵AB=CD AD=BC
∴四边形ABCD是平行四边形
(3)……………
1。如图,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )
2.如图,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm.
矩形
:
因为ABCD是矩形Þ
(2) (1)(3)
几何表达式举例:
(1) ……………
(2) ∵ABCD是矩形
∴∠A=∠B=∠C=∠D=90°
(3) ∵ABCD是矩形
∴AC=BD
6. 矩形的判定:
Þ四边形ABCD是矩形。
(1)(2) ﻩ(3)
几何表达式举例:
(1) ∵ABCD是平行四边形
又∵∠A=90°
∴四边形ABCD是矩形
(2) ∵∠A=∠B=∠C=∠D=90°
∴四边形ABCD是矩形
(3) ……………
,延长到,使,是中点.求证:.
菱形
7。菱形的性质:
因为ABCD是菱形
Þ
几何表达式举例:
(1) ……………
(2) ∵ABCD是菱形
∴AB=BC=CD=DA
(3) ∵ABCD是菱形
∴AC⊥BD ∠ADB=∠CDB
8.菱形的判定:
Þ四边形四边形ABCD是菱形。
几何表达式举例:
(1) ∵ABCD是平行四边形
∵DA=DC
∴四边形ABCD是菱形
(2) ∵AB=BC=CD=DA
∴四边形ABCD是菱形
(3) ∵ABCD是平行四边形
∵AC⊥BD
∴四边形ABCD是菱形
:如图,C是线段BD上一点,△ABC和△ECD都是等边三角形,R、F、G、H分别是四边形ABDE各边的中点,求证:四边形RFGH是菱形。
正方形
9.正方形的性质:
因为ABCD是正方形
几何表达式举例:
(1) ……………
(2) ∵ABCD是正方形
Þ
(1) (2)(3)
∴AB=BC=CD=DA
∠A=∠B=∠C=∠D=90°
(3) ∵ABCD是正方形
∴AC=BD AC⊥BD
∴……………
10。正方形的判定:
Þ四边形ABCD是正方形。
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
几何表达式举例:
(1) ∵ABCD是平行四边形
又∵AD=AB ∠ABC=90°
∴四边形ABCD是正方形
(2) ∵ABCD是菱形
又∵∠ABC=90°
∴四边形ABCD是正方形
,求证:BG=CE.
三角练习
图1
1、如图1,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=____.
2、在等腰△ABC中,AB=AC=14cm,E为AB中点,DE⊥AB于E,交AC于D,若△BDC的周长为24cm,则底边BC=____。
A
C
E
D
B
3、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论。
4、已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF求证:AC与BD互相平分
初二数学几何练习题 来自淘豆网m.daumloan.com转载请标明出处.