下载此文档

凸集、凸函数、凸规划.ppt


文档分类:高等教育 | 页数:约52页 举报非法文档有奖
1/52
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/52 下载此文档
文档列表 文档介绍
第3讲 凸集、凸函数、凸规划
凸集 (Convex Set)
凸函数 (Convex Function)
凸规划 (Convex Programming)
凸性(Convexity),它在最优化的理论证明及算法研究中具有非常重要的作用.
1
编辑ppt
凸集---定义
线性组合 (linear Combination)
仿射组合 (Affine Combination)
凸组合 (Convex Combination)
凸锥组合 (Convex Cone Combination)
2
编辑ppt
凸集---定义
例 二维情况下,两点x1, x2 的
(a)线性组合为全平面;
(b)仿射组合为过这两点的直线;
(c)凸组合为连接这两点的线段;
(b)凸锥组合为以原点为锥顶并通过这两点的锥.
3
编辑ppt
凸集---定义
4
编辑ppt
凸集---定义
定义1
设集合
若对于任意两点
及实数
都有:
则称集合
为凸集.
常见的凸集:单点集 { x },空集 ,整个欧氏空间 Rn,
超平面:
半空间:
5
编辑ppt
例:
证明超球
为凸集.
证明:

为超球中的任意两点,
则有:
即点
属于超球,
所以超球为凸集.
凸集----举例
6
编辑ppt
(1)
任意多个凸集的交集为凸集.
(2)

是凸集,
是一实数,
则下面的
集合是凸集:
凸集-----性质
(3)
7
编辑ppt
推论:

是凸集,

也是凸集,
其中
是实数.
(4)
S 是凸集当且仅当S中任意有限个点的凸
组合仍然在S中.
凸集-----性质
8
编辑ppt
注:
和集和并集有很大的区别,凸集的并集
未必是凸集,而凸集的和集是凸集.
例:
表示
轴上的点.
表示
轴上的点.

表示两个轴的所有点,
它不是凸集;

凸集.
凸集-----性质
9
编辑ppt
定义 设 S 中任意有限个点的所有凸组合所构成的集合称为S的凸包,记为H(S),即
凸集-----凸包(Convex Hull)
H(S)是Rn 中所有包含S 的凸集的交集.
H(S)是包含S 的最小凸集.
10
编辑ppt

凸集、凸函数、凸规划 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数52
  • 收藏数0 收藏
  • 顶次数0
  • 上传人相惜
  • 文件大小622 KB
  • 时间2021-02-07