第十三章实数----知识点总结
一、算术平方根
1. 算术平方根的定义: 一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.
规定:0的算术平方根是0.
也就是,在等式 (x≥0)中,规定。
2. 的结果有两种情况:当a是完全平方数时,是一个有限数;
当a不是一个完全平方数时,是一个无限不循环小数。
3. 当被开方数扩大时,它的算术平方根也扩大;
当被开方数缩小时与它的算术平方根也缩小。
4. 夹值法及估计一个(无理)数的大小
5. (x≥0) <—>
a是x的平方 x的平方是a
x是a的算术平方根 a的算术平方根是x
二、平方根
1. 平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果,那么x叫做a的平方根.
:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
3. 平方与开平方互为逆运算:3的平方等于9,9的平方根是3
4. 一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
5. 符号:正数a的正的平方根可用表示,也是a的算术平方根;
正数a的负的平方根可用-表示.
6. 平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
7. <—>
a是x的平方 x的平方是a
x是a的平方根 a的平方根是x
三、立方根
1. 立方根的定义:如果一个数x的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根
2. 一个数的立方根,记作,读作:“三次根号”,
其中叫被开方数,3叫根指数,不能省略,若省略表示平方。
3. 一个正数有一个正的立方根;
0有一个立方根,是它本身;
一个负数有一个负的立方根;
任何数都有唯一的立方根。
4. 利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
5. <—>
a是x的立方 x的立方是a
x是a的立方根 a的立方根是x
四、实数
1. 有理数的定义:任何有限小数或无限循环小数也都是有理数。
2. 无理数的定义:无限不循环小数叫无理数
3. 实数的定义:有理数和无理数统称为实数
4. 像有理数一样,无理数也有正负之分。例如,,是正无理数,,,是负无理数。由于非0有理数和无理数都有正负之分,实数也可以这样分类:
5. 实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,
第十三章实数知识点总结8k 来自淘豆网m.daumloan.com转载请标明出处.