下载此文档

金典教案-辅助角公式.docx


文档分类:中学教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
辅助角公式教学应注意的的几个问题
在三角函数中,有一种常见而重要的题型,即化为一个角的一个三角函数的形式,进而求原函数的周期、值域、,教师们总结出公式=或=·
,,半个学期不到,大部分学生都忘了,,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式.

教学中常见的推导过程与方法如下

例1 求证:sin+cos=2sin(+)=2cos(-).
其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论:
可见, sin+cos可以化为一个角的三角函数形式.
一般地,asin+bcos 是否可以化为一个角的三角函数形式呢?

例2 化为一个角的一个三角函数的形式.
解: asin+bcos=(sin+cos),
令=cos,=sin,
则asin+bcos=(sincos+cossin)
=sin(+),(其中tan=)
令=sin,=cos,则asin+bcos=(sinsin+coscos)=cos(-),(其中tan=)
其中的大小可以由sin、cos的符号确定的象限,=和(a,b)所在的象限来确定.
推导之后,是配套的例题和大量的练习.
但是这种推导方法有两个问题:一是为什么要令=cos,=sin? “规定”式的推导,学生难记易忘、易错!
=来得更自然
能否让让辅助角公式来得更自然些? 学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.
r
图1
O
的终边
P(a,b)
x
首先要说明,若a=0或b=0时,已经是一个角的一个三角函数的形式,≠0.
,以a为横坐标,b为纵坐标描一点P(a,b)如图1所示,则总有一个角,=r,r=,由三角函数的定义知
sin==,
cos=.
所以asin+bcos==cos sin+sincos
=.(其中tan=)
图2
r
O
x
y
的终边
P(b,a)
,以b为横坐标,以a为纵坐标可以描点P(b,a),如图2所示,则总有一个角的终边经过点P(b,a),设OP=r,则r=.由三角函数的定义知
sin==,
cos==.
asin+bcos=
=. (其中tan=)
例3 化为一个角的一个三角函数的形式.
解:在坐标系中描点P(,1),设角的终边过点P,则OP =r==

金典教案-辅助角公式 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人260933426
  • 文件大小307 KB
  • 时间2021-02-12