第4课时 斜边、直角边
【知识与技能】
掌握两个直角三角形全等的条件,并能应用它证明两个直角三角形全等.
【过程与方法】
通过对知识方法的归纳总结,,形成理性思维.
【情感态度】
通过探究与交流,解决问题,获得成功的体验,进一步激发探究的积极性.
【教学重点】
理解、掌握直角三角形全等的条件:HL.
【教学难点】
熟练选择判定方法,判定两个直角三角形全等.
一、情境导入,初步认识
问题1舞台的背景形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)请你设法帮工作人员找到解决问题的方式.
(2)如果工作人员只带了一卷尺,他能完成这个任务吗?
全体学生思考,并互相交流每个人的想法,组长收集每组的结论.
问题2 探究
画出一个Rt△ABC,使∠C=90°,CA=8cm,AB=10cm.
要求:每个学生都动手画图,并剪下所画的直角三角形,每两人把剪下的直角三角形,重叠在一起,观察它们是否重合.
【教学说明】教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
教师根据学生操作、交流情况,引导学生一起归纳上述两个问题的结果.
对于问题1,(1)方法有:测量斜边和一个对应的锐角(AAS),或测量没遮住的
一条直角边和一个对应的锐角(ASA或AAS);(2)可以完成这个条件,其依据正是本节所要学的知识,以此激发学生探究的兴趣.
对于问题2,归纳得到:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.
三、讲解例题
例1 如图,已知AC⊥BC,BD⊥AD,AC=:BC=AD.
【教学说明】由学生思考,交流讨论后,指定学生表述思路,并由教师板书证明过程,引导学生正确书写解题步骤.
证明:∵AC⊥BC,BD⊥AD,
∴∠C=∠D=90°.
在Rt△ABC和Rt△BAD中,
î
í
ì
AC=BD
AB=BA,(公共边)
公共边
∴Rt△ABC≌Rt△BAD(HL).
四、运用新知,深化理解
1如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
求证:BF=DE
2 如图,C是路段AB的中点,两人从C同时出发,以相
直角三角形判定金城二中 来自淘豆网m.daumloan.com转载请标明出处.