【易错分析】
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别.
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”.
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”.
易错点4:全等形,全等三角形及其性质,,线段的倍分这些问题.
易错点5:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入.
易错点6:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题.
易错点7:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用.
【好题闯关】
,△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD等于( )
A. 100° B. 120° C. 130° D. 150°
解析:本题考查三角形外角的性质,“不相邻”这三个字.
答案:C
,为估计池塘岸边、两点的距离,小方在池塘的一侧选取一点,测得米,米,、间的距离不可能是( )
A.5米 B.10米 C. 15米 D.20米
解析:本例考查三角形三边之间的不等关系,三角形的任何两边之和大于第三边,“任何”两字.
答案:A
°,那么这个等腰三角形顶角的度数是( )
° B. 120° ° °或120°
解析:等腰三角形的内角有顶角和底角之分,而已知一个内角是30°,并未说明是顶角还是底角,因此,本题很容易漏解.
答案:D
,在△ABC和△ADE中,有以下四个论断:① AB=AD,② AC=AE,③ ∠C=∠E,④ BC=DE,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题(用序号“JJJðJ”的形式写出):
解析:本例是一个开放型问题,学生可以从①②③④中任选3个作为条件,而余下一个为结论,,,要注意“SSA”的错误做法.
答案:①②④ð③,或 ②③④ð①
,13,12,则的面积为( )
A.30 B.60 C.78
中考数学考前纠错考点四三角形 来自淘豆网m.daumloan.com转载请标明出处.