一、提出问题:
甲、乙两个班,原来甲班比乙班多20人.现在学校从甲班抽调14人去乙班,则甲班人数正好是乙班人数的7/8,求甲、乙两个班的现有人数.
七年级数学一元一次方程应用题
算术解法:甲班原比乙班多20人,乙班现比甲班多14×2-20(人),相当于乙班现
有人数的 .因此,乙班现有人数为
,甲班现
有人数为
七年级数学一元一次方程应用题
代数解法:设甲班现有x人,则乙班现有
x+14×2-20=x+8(人),因此,
即甲班现有56
人,乙班现有64人.
七年级数学一元一次方程应用题
对比两种解法可以看出:
算术解法是把未知量置于特殊地位,设法用已知量组成的混合运算式表示出来(在条件较复杂时,列出这样的式子往往比较困难);
代数解法是把未知量与已知量同等对待(使未知量在分析问题的过程中也能发挥作用),找出各量之间的等量关系,建立方程.
因此,代数解法的“直截了当”比算术解法的“拐弯抹角”要方便得多.但是,在由算术解法向代数解法转化的过程中,同学们原来的思维定势不同程度的成为接受新思想的障碍,算术解法的思想会时隐时现.要充分发挥代数解法的优越性,必须有意识地进行对比性训练解题,使同学们从思想上认识到学习代数解法的必要性,而自觉地运用.
七年级数学一元一次方程应用题
二、知识梳理:
1、列方程解应用题:
学习列方程解应用题是十分重要的,首先从学习内容上讲,中学数学的学习离不开方程,离不开利用列方程来解决应用问题,特别是我们已经明确了这样一种思想:学习数学重在应用.因此列方程解应用题中蕴含的思想方法对学习者而言是十分重要的.第二,通过列方程解应用题可以培养和提高分析问题和解决问题的能力.这对于一个人的发展也是十分重要的.
七年级数学一元一次方程应用题
列方程过程的实质有多种说法:如“通过分析,找出等量关系,而列出方程”,或“把题目中蕴含的相等关系找出来,列出方程”.这些说法都指明了列方程的方向——找出相等关系.一般步骤如下:
(1)审题、弄清题意,分清哪些是已知量,哪些是未知量.
(2)设未知数,选一个适当的未知量设为未知数x.
(3)列方程.
(4)解所列的方程.
(5)根据题意,作出答案.
七年级数学一元一次方程应用题
具体可从以下三条途径出发研究解决:
(1)图解分析:
分析问题中的数量关系时,借助图形,可以使抽象的关系直观化、简单化,根据题意画图列式是对同学们的思维能力的有效培养.这里,应要求“图要达意”,避免图上发生错误而造成列式错误.
七年级数学一元一次方程应用题
(2)列表分析:
列表法的优点是通过列表归类使对应量之间关系较为清晰,往往有利于运用比例分析法显示解题思路.
(3)框图分析:
框图分析是由文字语言、符号语言及长方格通过题中相等关系确立而成,容易操作,不拘一格。
七年级数学一元一次方程应用题
例1、某连队从驻地出发前往某地执行任务.行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达给连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问是否能在规定时间内完成任务.
七年级数学一元一次方程应用题
例2、汽船从甲地顺水开往乙地,.已知此船在静水中速度为18千米/时,水流速度为2千米/时.求甲、乙两地间的距离.
七年级数学一元一次方程应用题
七年级数学一元一次方程应用题 来自淘豆网m.daumloan.com转载请标明出处.