-直接开平方法(直接开方法)
直接开平方法(直接开方法)
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重难点关键
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.
问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?
老师点评:
面的x,那么2t+1=±2
即2t+1=2,2t+1=-2
方程的两根为t1=-,t2=--
例1:解方程:x2+4x+4=1
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x1=-1,x2=-3
例2.,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=
(1+x)2=
直接开平方,得1+x=±
即1+x=,1+x=-
所以,方程的两根是x1==20%,x2=-
因为每年人均住房面积的增长率应为正的,因此,x2=-.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材P36 练习.
四、应用拓展
例3.某公司一月份营业额为1万元,,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长
的,应是(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=
把(1+x)当成一个数,配方得:
(1+x+)2=,即(x+)2=2.56
x+=±,即x+=,x+=-
方程的根为x1=10%,x2=-
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.
六、布置作业
1.教材P45 复习巩固1、2.
2.选用作业设计:
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为( ).
A.
22.2-直接开平方法(直接开方法) 来自淘豆网m.daumloan.com转载请标明出处.