下载此文档

新建的抽屉原理.doc


文档分类:高等教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
新建的抽屉原理
2

———————————————————————————————— 作者:
———————————————————————————————— 日期:

个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。
目录
常见形式
整除问题
面积问题
染色问题
狄利克雷原则
一般表述及意义
抽屉问题经典练习
常见形式
整除问题
面积问题
染色问题
狄利克雷原则
一般表述及意义
抽屉问题经典练习
展开
编辑本段
常见形式
第一抽屉原理
  原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
  
  
抽屉原理
3

个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
  原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体.
  [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能
  原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。。
  原理1 2 3都是第一抽屉原理的表述
第二抽屉原理
  :
  把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m-1)个物体.
  [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能
应用
  二.应用抽屉原理解题
  抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
  例1:400人中至少有两个人的生日相同.
  解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.
  又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
  “从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
  “从数1,2,。。。,10中任取6个数,其中至少有2个数为奇偶性不同。”
  例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
  解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。
4

个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
个人收集整理 勿做商业用途
  上面数例论证的似乎都是“存在”、“总有”、“至少有"的问题,不错,这正是抽屉原则的主要作用.(需要说明

新建的抽屉原理 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人ipod0a
  • 文件大小800 KB
  • 时间2021-08-18