. -
- -可修编.
第一章有理数
:
(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数Û0和正整数; a>0 Û a是正数; a<0 Û a是负数;
a≥0 Û a是正数或0Ûa是非负数; a≤0 Û a是负数或0Ûa是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数,0的相反数还是0,(2)注意:a-b+c的相反数是-(a-b+c)= -a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:或 ;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0,非负性;
. -
- -可修编.
:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-,以上数据表示与标准质量的差,绝对值越小,越接近标准。
:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1Û a、b互为倒数; 若ab=-1Û a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法
人教版初一数学上册知识点归纳总结 来自淘豆网m.daumloan.com转载请标明出处.