数学家的故事:北宋数学家贾宪
第 3 页
北宋数学家贾宪
贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。
数学成就
贾宪的老师楚衍是北宋前期著名的天文学家和数学家,“于《九章》、《缉古》、《缀术》、《海岛》诸算经尤得其妙”。当时人王洙(997---1057)有记载:“世司天算,楚,为首。既老昏,有,子贾宪、朱吉著名。宪今为左班殿直,吉隶太史。宪运算亦妙,有书传于世。”根据记载贾宪著有《黄帝九章算经细草》九卷、《算法斅古集》二卷及《释锁》,可惜均已失传。杨辉著《详解九章算法》(1261年)中曾引用贾宪的“开方作法本源”图(即指数为正整数的二项式展开系数表,现称“杨辉三角形”)和“增乘开方法”(求高次幂的正根法)。前者比帕斯卡(PascalBlaise,1623---1662)三角形早600年,后者比霍纳(WilliamGeogeHorner,1786—1837)的方法(1819年)早770年。此外,“立成释锁开方法”的给出,“勾股生变十三图”的完善,以及“增乘方求廉法”的创立,都表明贾宪对算法抽象化、程序化、机械化作出了重要贡献。
数学方法论
虽然有关贾宪的资料保存下来的并不完整,但从杨辉缉录的细草中,我们仍然可以发现他的一些独到的数学思想和方法,主要有以下两点。
(一)抽象分析法
在研究《九章》过程中,贾宪使用了抽象分析法,尤其在解决勾股问题是更为突出,他首先提出了“勾股生变十三图”。他说:“勾股弦并而为和,减而为较,等而为变,为乘,为段,自乘为积,为幂。”十三名指勾(a)、股(b)、弦(c)、勾股较(b-a)、勾弦较(c-a)、股弦较(c-b)、勾股和(a+b)、勾弦和(a+c)、股弦和(b+c)、弦较和(c+(b-a))、弦和和(c+(a+b))、弦和较((a+b)-c)、弦较教(c-(b-a))。他完备了勾股弦及其和差的所有关系,说这些关系“有用而取,无用不取,立图而验之”,说明他已经抛开《九章》算题本身而对勾股问题进行抽象分析了。例如
第 4 页
“出南北门测邑方”问,《九章》的方法是:术曰:以出北门步数乘西行步数,倍之为实,并出南门步数为从法,开方除之即邑方。贾宪的方法是:术曰:余勾乘股,倍之为实并二余勾为从,开方除不。正是掌握了这一方法,才使他能够使用纯数学的方法改写《九章》术文,给后人留下公式化的解题范例。在方程术等其他章节的细草中,他也广泛运用了这种方法。
(二)程序化方法
程序化方法主要是指探究问题的思维程序、过程和步骤。适用于同一理论体系下,同一类问题的解决。贾宪的“增乘开方法”和“增乘方求廉法”尤其集中地体现了这一方法,比如少广章有:“今有积一百八十六万八百六十七尺,问:为立方几何?”这是一道对1860867开三次方的问题。贾宪的方法是:草曰:(1)实上商置第一位得数一百。(2)以上商乘下法置廉一百,乘廉为方一万,除实,讫。(3)复以上商一百乘下法入廉共二百,乘廉入方共三万。(4)又乘下法入廉共三百
数学家的故事:北宋数学家贾宪 来自淘豆网m.daumloan.com转载请标明出处.