下载此文档

广东省高考文科数学知识点汇总.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
: .
广东咼考咼中数学考点归纳
第一部分 集合
1. 自然数集:N 有理数集:Q 整数集:Z 实数集:R
2 . ••是任何集合的子集,是任何非空集合的真子集 .
,川,an}的子集个数共有2n个;真子集有2n - 1个; 非空子集有2n - 1个;非空真子集有 2n - 2个.
第二部分函数与导数
:注意:①第一个集合中的元素必须有象;②一对一或多对一
2 •函数值域的求法(即求最大(小)值):①利用函数单调性 :②导数法
③利用均值不等式 .ab乞< a 2 b
3 •函数的定义域求法:① 偶次方根,被开方数_0 ②分式,分母=0
③对数,真数・0,底数・0且=1④0次方,底数=0⑤实际问题根据题目求 复合函数的定义域求法:
① 若f(x)的定义域为[a, b:,则复合函数f[g(x)]的定义域由不等式 a < g(x) < b解出
② 若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于 x€ [a,b]时,求g(x)的 值域•
4•分段函数:值域(最值)、单调性、图象等问题,先分段解决,再综合各段情况下结 论。
5•函数的奇偶性:
⑴函数的定义域关于原点对称是函数具有奇偶性的 必要条件
⑵f (x)是奇函数=f(-X)- - f(x)=图象关于原点对称;
f(x)是偶函数u f(-x)=f(x)二 图象关于y轴对称•
⑶奇函数f (x)在0处有定义,则f(0)=0
⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性
6•函数的单调性:
⑴单调性的定义:
① f (x)在区间M上是增函数二-x1, x^ M ,当x「:: x2时有f(xj ::: f(X2);
② f (x)在区间M上是减函数:=~x1,x2 M ,当x1 ::: x2时有f(xj • f (x2);
(记忆方法:同不等号为增,不同为减,即同增异减)
⑵单调性的判定:①定义法:一般要将式子f(xJ-f(X2)化为几个因式作积或作商的形式,
以利于判断符号(五步:设元,作差,变形,定号,单调性):②导数法(三步:求导,解不等式
f (x) 0, f (x) :: 0,单调性)
7 •函数的周期性:
(1)周期性的定义:对定义域内的任意 x,若有f(x・T) = f(x)(其中T为非零常数),
则称函数f (x)为周期函数,T为它的一个周期。所有正周期中最小的称为函数的 最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的最小正周期:① y = sinx:T = 2二:②y=cosx:T=2二;
④ y = As in ( x J, y = Acos(,x J :T
(3)与周期有关的结论:
f (x a) = f(x-a)或 f(x -2a) = f (x)(a 0) = f (x)的周期为 2a
&指数与指数函数
(1)指数式有关公式
①an
(以上 a 0,m, n N ,且 n 1)
# / 16
# / 16
需T = [a, n为奇数 a |a |,n为偶数
⑵指数函数
0 ■ a <1在定义域内是单调递
指数函数:y=ax,a 1在定义域内是单调递增函数; 减函数。注: 以上两种函数图象都恒过点(0,1)
9 •对数与对数函数
⑴对数:
① ab 二 N 二 loga N 二 b ; ② loga MN = loga M loga N ;
③ loga — = log a M - log a N ; ④ logam b^ —logab.
N m
⑤对数的换底公式:Ioga N二如虫.⑥对数恒等式:alogaN二N .
logma
⑵对数函数:
② 对数函数: y=logaX,a 1在定义域内是单调递增函数; 0 ::: a ::: 1在定义域内
是单调递减函数;注: 以上两种函数图象都恒过点(1, 0)
③ 反函数: y二ax与y =logax互为反函数。互为反函数的两个函数的图象关于
y = x对称.

⑴解析式:①一般式:f (x) = ax2 bx c;②顶点式:f (x) =a(x-h)2 • k , (h,k)为 顶点;③零点式:f (x) = a(x-xj(x-x2) (a丰0).
2 b
⑵ 二次函数y = ax2 • bx • c的图象的对称轴方程是x ,顶点坐标是
2a
''b 4ac-b2
I 2a 4a 』
⑶ 二次函数问题解

广东省高考文科数学知识点汇总 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
最近更新