电磁场与微波技术黄玉兰习题.doc电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
1
电磁场与微波技术黄玉兰习题
第一章
证:
ur ur
AgB 9 4 1 ( 6) ( 6) 5 0
ur ur
A和B相互垂直
ur ur
A B=0
ur ur
A和B相互平行
1〕
g
Ax
Ay
Az
A
divA
y
z
x
2x2x2y72x2y2z2
(2)由高斯散度定理有
urt
ur
Ads
gAd
dz
dy
(2x2x2y72x2y2z2)dz
?
s1
24
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
〔1〕因为闭合路径在
xoy
平面内,
故有:
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
3
电磁场与微波技术黄玉兰习题
A ?dl
(exx
eyx2
ezy2z)(exdx
eydy)
xdx
x2dy
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
A?dl8(2)
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
因为S在XOY面内,
A ?ds
(ex
2yz
ez2x)(exdxdy)
2xdxdy
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
( A ?ds) 8s所以,定理成立。
由梯度公式
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
ue
u
e
u
e
u|
x
x
y
y
z
z(2,1,3)
4ex10ey
ez
方向导数最大值为
42
102
12
117
方向:
1〔4e
10e
e〕
117
x
y
z
〔2〕最小值为0,与梯度垂直证明u0g A0
书上p10
第二章
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
8
电磁场与微波技术黄玉兰习题
q
a3
V ewrsin
3qwrsin
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
9
电磁场与微波技术黄玉兰习题
J?V e
4a3
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
用圆柱坐标系进行求解场点坐标为 P(0,0,z).线电荷元ldl'ld'可以视为点电荷,其到场点的距离矢量
ur uuruuruur
R ErgR ezgzeaga
uur
uur
uur
ezgz
eaga,r
z2
a2
得Er
z2
a2
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
11
电磁场与微波技术黄玉兰习题
所以点的电场强度为
P
uuuuuuuuuuuuuuuuuuuur
ur
uur
uur
2
g
g
E
ezz
eaa
0
2
2
3
〔z
2
0
uur
a〕4
uur
'
uur
Qea=excos
eysin
ur
ur
lz
E
ez
3
〔z
2
2
0
a〕2
2
ld'
'
2
uur
'
0
0
eagd
电磁场与微波技术黄玉兰习题
电磁场与微波技术黄玉兰习题
20
电磁场与微波技术黄玉兰习题
(1)r
时
b
ur
r
4
r2E(r)
Eds
?s
g
Eq
r
2
r2)4
r2dr
(b
0
由高斯定理有
ur
r
Eds=
?
g
电磁场与微波技术黄玉兰习题 来自淘豆网m.daumloan.com转载请标明出处.