用计算器进行数的简单计算_七年级数学教案精品范文模板 可修改删除
免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
撰写人:___________日 期:__________为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题
教学目标
1.使学生了解命题、真命题和假命题等概念.
2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式
重点和难点
分清命题的题设和结论,既是教学的重点又是教学的难点.
教学过程()
一、引入
请大家随意说出一些语句,教师把它们写在黑板上.如:
(1)对顶角相等吗?
(2)作一条线段AB=2cm;
(3)我爱初二(1)班;
(4)两直线平行,同位角相等;
(5)相等的两个角,一定是对顶角.
二、新课
问:上述语句中,哪些是判断一件事情的句子?
答:(3)、(4)、(5)是判断一件事情的句子.
教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).
例1 请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?
(1)等角的补角相等;
(2)有理数一定是自然数;
(3)内错角相等两直线平行;
(4)如果a是有理数,那么a2>a;
(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).
教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.
练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.
例2 在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?
(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.
(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。
(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.
(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.
(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“ 1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.
教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.
真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.
假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!
怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是
用计算器进行数的简单计算 七年级数学教案 来自淘豆网m.daumloan.com转载请标明出处.