下载此文档

934函数的性质—函数的单调性.doc


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
课 题: 函数的性质-函数的单调性
教学目的:
(1)理解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思
(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区课 题: 函数的性质-函数的单调性
教学目的:
(1)理解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思
(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间
(3)掌握运用函数的单调性定义解决一类详细问题:能运用函数的单调性定义证明简单函数的单调性
教学重点:函数的单调性的概念;
教学难点:利用函数单调的定义证明详细函数的单调性
授课类型:新授课
课时安排:1课时
教学过程:
一、复习引入:
⒈ 复习:,我们按照列表、描点、连线等步骤先分别画函数和的图象. 的图象如图1,的图象如图2。 (精品文档请下载)
⒉ 引入:从函数的图象(图1)看到:
图象在轴的右侧部分是上升的,也就是说,当在区间[0,+)上取值时,随着的增大,相应的值也随着增大,即假设取∈[0,+),得到=,=,那么当〈时,有〈。这时我们就说函数==在[0,+ )上是增函数。 (精品文档请下载)
图象在轴的左侧部分是下降的,也就是说,当在区间(—,0)上取值时,随着的增大,相应的值反而随着减小,即假设取∈(—,0),得到=,=,那么当<时,有〉.这时我们就说函数==在(—,0)上是减函数。
(精品文档请下载)
函数的这两个性质,就是今天我们要学习讨论的。
二、讲解新课:
⒈ 增函数和减函数
定义:对于函数的定义域I内某个区间上的任意两个自变量的值,⑴假设当〈时,都有<,那么说在这个区间上是增函数(如图3);⑵假设当〈时,都有>,那么说在这个区间上是减函数(如图4).(精品文档请下载)
说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数(图1),当∈[0,+)时是增函数,当∈(—,0)时是减函数。(精品文档请下载)
⒉ 单调性和单调区间
假设函数y=f(x)在某个区间是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。(精品文档请下载)
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
说明:⑴函数的单调区间是其定义域的子集;
⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在那样的特定位置上,虽然使得〉,但显然此图象表示的函数不是一个单调函数;(精品文档请下载)
⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的
“<或〉, ”改为“ 或,”即可;(精品文档请下载)
⑷定义的内涵和外延:
内涵是用自变量的大小变化来刻划函数值的变化情况;
外延①一般规律:自变量的变化和函数值的变化一致时是单调递增,自变量的变化和函数值的变化相对时是单调递减. (精品文档请下载)
②几何特征:在自变量取值区间上,假设单调函数的图象上

934函数的性质—函数的单调性 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人jsyhqk
  • 文件大小438 KB
  • 时间2022-02-23