对数公式及对数函数总结.doc对数公式及对数函数的总结
对数公式及对数函数的总结
1/15
对数公式及对数函数的总结
对数运算和对数函数
对数的定义
①若axN(a0,且a1),则x叫做以a为底N的对数,记作xloga,0)
(0,1]
)
lg(x
1)
提示:(1)分式函数,分母不为
0,如y
1,x
0。
x
(2)二次根式函数,被开方数大于等于
0,y
x,x
0
。
(3)对数函数,真数大于
0,y
loga
x,x
0
。
类型三、对数函数中的单调性问题
1函数f(x)
lg(x2
4x
3)的单调递增区间为(
(
,1))
2函数f(x)
ln(x2
2x
15)的单调递增区间是
(5,
)
3函数y
(x2
3x
2)的递增区间是(
(
,1))
4已知f
x
2
log3x,x
1,9,则f
x
的最小值为(-2)
81
对数公式及对数函数的总结
对数公式及对数函数的总结
15/15
对数公式及对数函数的总结
5
若函数y
log2(x2
axa)在区间(,1
3)上是增函数,
a的取值范围。[2
2
3,2]
6
不等式log3(2x1)
1的解集为(1,2]
2
7
设函数fx
log24x
log22x
,且x满足4
17x4x2
0,求fx的最大值。12.
提示:(1)在对数函数中
f(x)
logax中,当a
1,f(x)在其定义域上是增函数;当
1
a0,f(x)在其定
义域上是减函数。
(2)在复合函数
f(x)
logag(x)中,函数的单调性复合同增异减。
类型四、对数函数中的大小比较
1
已知logm4
logn4,比较m,n的大小。0
m1n
2
已知alog3
2,blog43,clog54,比较a,b,c的大小关系c
ba
3
设alog3,b
log2
3,clog3
2,则a,b,c的大小关系a
b
c
4若ab
0,0
c1,则B(A)
loga
c
logb
c()
logcb
logcb
()
a
c
b
c
()
c
a
c
b
B
C
D
5
若a1,且a
x
logax
ay
loga
y,则x与y之间的大小关系是()
x
y
0
提示:在y
logab比较大小题型中,当
a
1,
x
1
y
0
a
0,
x
1
y
0
1
x0y
;当1
1
x
0y
。
0
0
类型五、对数函数求值问题
1已知函数f(x)
lgx,若f(ab)
1,则f(a2)
f(b2)
2
2解方程(log2x)2
log2x
log29
log38
0x8或x
1
对数公式及对数函数总结 来自淘豆网m.daumloan.com转载请标明出处.