小学数学解题方法解题技巧之列举法
小学数学解题方法解题技巧之列举法
解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举排列成六个不同的三位数,但每个三位数数码的和都是1+2+3=6,即它们都是3的倍数,所以都不是质数。
综上所说,所能得到的质数是2、3、13、23、31,共五个。
*例7 在一条笔直的公路上,每隔10千米建有一个粮站。一号粮站存有10吨粮食,2号粮站存有20吨粮食,3号粮站存有30吨粮食,4号粮站是空的,5号粮站存有40吨粮食。现在要把全部粮食集中放在一个粮站里,,那么粮食集中到第几号粮站所用的运费最少(图3-3)?(适于五年级程度)
解:看图3-3,可以断定粮食不能集中在1号和2号粮站。
下面将运到3号、4号、5号粮站时所用的运费一一列举,并比较。
(1)如果运到3号粮站,所用运费是:
×10×(10+10)+×20×10+×40×(10+10)
=100+100+400
=600(元)
(2)如果运到4号粮站,所用运费是:
×10×(10+10+10)+×20×(10+10)+×30×10+×40×10
=150+200+150+200
=700(元)
(3)如果运到5号粮站,所用费用是:
×10×(10+10+10+10)+×20×(10+10+10)+×30×(10+10)
=200+300+300
=800(元)
800>700>600
答:集中到第三号粮站所用运费最少。
*例8 小明有10个1分硬币,5个2分硬币,2个5分硬币。要拿出1角钱买1支铅笔,问可以有几种拿法?用算式表达出来。(适于五年级程度)
解:(1)只拿出一种硬币的方法:
①全拿1分的:
1+1+1+1+1+1+1+1+1+1=1(角)
②全拿2分的:
2+2+2+2+2=1(角)
③全拿5分的:
5+5=1(角)
只拿出一种硬币,有3种方法。
(2)只拿两种硬币的方法:
①拿8枚1分的,1枚2分的:
1+1+1+1+1+1+1+1+2=1(角)
②拿6枚1分的,2枚2分的:
1+1+1+1+1+1+2+2=1(角)
③拿4枚1分的,3枚2分的:
1+1+1+1+2+2+2=1(角)
④拿2枚1分的,4枚2分的:
1+1+2+2+2+2=1(角)
⑤拿5枚1分的,1枚5分的:
1+1+1+1+1+5=1(角)
只拿出两种硬币,有5种方法。
(3)拿三种硬币的方法:
①拿3枚1分,1枚2分,1枚5分的:
1+1+1+2+5=1(角)
②拿1枚1分,2枚2分,1枚5分的:
1+2+2+5=1(角)
拿出三种硬币,有2种方法。
共有:
3+5+2=10(种)
答:共有10种拿法。
*例9 甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,甲赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。问小强赛了几盘?(适于五年级程度)
解:作表3-2。
表3-2
甲已经赛了4盘,就是甲与乙、丙、丁、小强各赛了一盘,在甲与乙、丙、丁、小强相交的那些格里都打上√;乙赛的盘数,就是除了与甲赛的那一盘,又与丙和小强各赛一盘,在乙与丙、小强相交的那两个格中都打上√;丙赛了两盘,就是丙与甲、乙各赛一盘,打上√;丁与甲赛的那一盘也打上√。
丁未与乙、丙、小强赛过,在丁与乙、丙与小强相交的格中都画上圈。
根据条件分析,填完表格以后,可明显地看出,小强与甲、乙各赛一盘,未与丙、丁赛,共赛2盘。
答:小强赛了2盘。
*例10 商店出售饼干,现存10箱5千克重的,4箱2千克重的,8箱1千克重的,一位顾客要买9千克饼干,为了便于携带要求不开箱。营业员有多少种发货方式?(适于五年级程度)
解:作表3-3列举发货方式。
表3-3
答:不开箱有7种发货方式。
*例11 运输队有30辆汽车,按1~30的编号顺序横排停在院子里。第一次陆续开走的全部是单号车,以后几次都由余下的第一辆车开始隔一辆开走一辆。到第几次时汽车全部开走?最后开走的是第几号车?(适于五年级程度)
解:按题意画出表3-4列举各次哪些车开走。
表3-4
从表3-4中看得出,第三次开走后剩下的是第8号、16号、24号车。按题意,第四次8号、24号车开走。到第五次时汽车全部开走,最后开走的是第16号车。
答:到第五次时汽车全部开走,最后开走的是第16号车。
*例12 在甲、乙两个仓库存放大米,甲仓存90袋,乙仓存50袋,甲仓每次运
小学数学解题方法解题技巧之列举法 来自淘豆网m.daumloan.com转载请标明出处.