学习文档 仅供参考
专题-------圆的切线证明
我们学习了直线和圆的位置关系,就出现了新的一类习题,,证明圆的切线常用的方法有:
一、假设直线l过⊙O上某一点A,证明l是⊙O的切线,
学习文档 仅供参考
专题-------圆的切线证明
我们学习了直线和圆的位置关系,就出现了新的一类习题,,证明圆的切线常用的方法有:
一、假设直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切.
证明一:连结OD.
∵AB=AC,
∴∠B=∠C.
∵OB=OD,
∴∠1=∠B.
D
∴∠1=∠C.
∴OD∥AC.
∵DM⊥AC,
∴DM⊥OD.
∴DM与⊙O相切
证明二:连结OD,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=AC,
∴∠1=∠2.
∵DM⊥AC,
∴∠2+∠4=900
C
∵OA=OD,
∴∠1=∠3.
∴∠3+∠4=900.
即OD⊥DM.
∴DM是⊙O的切线
例2 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.
学习文档 仅供参考
求证:DC是⊙O的切线
证明:连结OC、BC.
∵OA=OC,
∴∠A=∠1=∠300.
∴∠BOC=∠A+∠1=600.
又∵OC=OB,
∴△OBC是等边三角形.
D
∴OB=BC.
∵OB=BD,
∴OB=BC=BD.
∴OC⊥CD.
∴DC是⊙O的切线.
例3 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.
求证:PC是⊙O的切线.
证明:连结OC
∵OA2=OD·OP,OA=OC,
∴OC2=OD·OP,
.
又∵∠1=∠1,
∴△OCP∽△ODC.
∴∠OCP=∠ODC.
∵CD⊥AB,
∴∠OCP=900.
∴PC是⊙O的切线.
二、假设直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:
学习文档 仅供参考
“作垂直;证半径”
例4 如图,AB=AC,D为BC中点,⊙D与AB切于E点.
求证:AC与⊙D相切.
证明一:连结DE,作DF⊥AC,F是垂足.
∵AB是⊙D的切线,
∴DE⊥AB.
∵DF⊥AC,
∴∠DEB=∠DFC=900.
∵AB=AC,
∴∠B=∠C.
又∵BD=CD,
中考数学-圆的切线证明方法 来自淘豆网m.daumloan.com转载请标明出处.