高中数学概率与统计知识点
高中数学之概率与统计
求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)==;
等可能事件概率的计映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质:;.
(4)若~B(n,p),则 ; D =npq(这里q=1-p) ;
如果随机变量服从几何分布,,则,D =其中q=1-p.
例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε
0
1
2
η
0
1
2
P
P
则比较两名工人的技术水平的高低为 .
思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.
解答过程:工人甲生产出次品数ε的期望和方差分别为:
,
;
工人乙生产出次品数η的期望和方差分别为:
,
由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见乙的技术比较稳定.
小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.
例2.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
1
2
3
4
5
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;
(Ⅱ)求的分布列及期望.
[解答过程](Ⅰ)由表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.
知表示事件“购买该商品的3位顾客中无人采用1期付款”
, .
(Ⅱ)的可能取值为元,元,元.
,
,
.
的分布列为
(元).
抽样方法与总体分布的估计
抽样方法
1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.
总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.
总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.
典型例题
、B、C三种不同型号的产品,产品数量之比依次为2:3:,= .
解答过程:A种型号的总体是,则样本容量n=.
例2.一个总体中有100个个体,随机编号0,1,2,
…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,,规定如果在第1组随机抽取的号码为,那么在第组中抽取的号码个位数字与的个位数字相同,若,则在第7组中抽取的号码是 .
解答过程:第K组的号码为 ,,…,,当m=6时,第k组抽取的号的个位数字为m+k的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.
正态分布与线性回归
(1)正态分布的概念
如果连续型随机变量 的概率密度函数为 ,x 其中、为常数,并且>0,则称服从正态分布,记为(,).
(2)期望E =μ,方差.
(3)正态分布的性质
正态曲线具有下列性质:
①曲线在x轴上方,并且关于直线x=μ对称.
②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
高中数学概率与统计知识点 来自淘豆网m.daumloan.com转载请标明出处.