下载此文档

基于离子电流与LSTM神经网络的汽油机早燃判断 丁伟奇.pdf


文档分类:汽车/机械/制造 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
内 燃 机 学 报
第 卷( )第 期 ( )
condition of 1 500 r/min rotational speed and 72% load rate,K fold cross-
validation and particle swarm optimization were used to optimize hyper parameters. The results show that,the ac-
curacy of LSTM neural network model established is %,and the accuracy of detecting pre-ignition before
CA 10 is %. Compared with back propagation(BP) neural network and support vector machine(SVM),
LSTM has a less root mean square error(RMSE) and is more advanced in discrimination. By receiver operating
characteristic curve,it is proved that LSTM is a better discrimination model with a larger area under curve. Com-
pared with the limit-based discrimination method,the accuracy of LSTM is higher. LSTM takes both accuracy and
advance into account,and accords with the fundamental goal of judging pre-ignition based on ionic current signal.
Keywords:gasoline engine;pre-ignition;ionic current;long short-term memory(LSTM);neural network

随着碳减排和环境保护的形势日趋严峻,寻求更 燃及其引起的超级爆震是限制提升热效率、降低排放
高效的动力总成技术方案已成为全球汽车制造厂商 的重要因素之一[3-4].早燃的出现较为随机且没有明
的首要任务.火花控制压燃着火、可变配气、涡轮增 显的征兆,可能是由缸内的随机热点引起,如碳粒和
压和缸内直喷等[1-2]技术已成为了有效提高汽油机热

基于离子电流与LSTM神经网络的汽油机早燃判断 丁伟奇 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人麝月
  • 文件大小1.22 MB
  • 时间2022-05-04