第 21 卷 第 4期 软件导刊 Vol. 21 No. of the feature vector transformed by in
trinsic mode functions component is trained by GA-BP neural network,and Bayesian regularization is used as the training function of BP to re
construct the cardiopulmonary signal, which is compared with the original EEMD reconstructed signal. The simulation results show that under
different signal-to-noise ratios,signals extracted by GA-BP neural network has higher consistency with the actual results,and can effectively
improve the extraction accuracy of respiratory and heartbeat signals.
Key Words:ultra wide band radar; ensemble empirical mode decomposition; GA-BP neural network; Bayesian regularization; signal pro
cessing
或心理异常反应,使测量结果产生误差;其次,当受试者大
0 引言 面积皮肤受损时,接触式检测技术很难获取有效的生理信
号。因此,非接触式生命体征检测技术应运而生
随着现代社会的不断发展,越来越多的人们注重身体 基于雷达信号的非接触式生命体征检测技术是一项
健康的维持与监控。生命体征是评估身体健康的重要指 跨领域的融合技术。在地震灾害中,该技术可以检测废墟
标,主要包括体温、脉搏、呼吸和血压等。目前临床主要采 下是否有幸存人员及其生理状况;在家庭健康领域中,该
用接触式检测技术监测生命体征,如监护仪、心电图等,原
非接触式UWB传感的生命体征检测分析 来自淘豆网m.daumloan.com转载请标明出处.