下载此文档

函数的对称性及其应用 函数的对称性.docx


文档分类:高等教育 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍

函数的对称性及其应用_函数的对称性
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不=f(x)图像上,而点P与点P′关于点A(a,b)对称,充分性得征。
  必修1中偶函数的定义:若函数f(x),对于定义域中的任意x都有f(-x)=f(x),则f(x)为偶函数。
  由偶函数的定义知,偶函数的图象关于y轴(即直线x=0)对称。将这种轴对称的特点进行推广得到下面的性质。
  定理2 函数y=f(x)的图象关于直线x=a对称的充要条件是f(a+x)=f(a-x),即f(x)=f(2a-x)。
  可以仿照定理1的证明方法进行证明。
  定理3 ①若函数y=f(x)图象同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
  ②若函数y=f(x)图象同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
  ③若函数y=f(x)图象既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。










  ①的证明:函数y=f(x)图象同时关于点A(a,c)和点B(b,c)成中心对称,∴f(x)+f(2a-x)=2c,∴f(x)+f(2b-x)=2c,两式相减得
  f(2a-x)=f(2b-x),用x代2a-x得
  f(x)=f(2b-2a+x)。
  所以y=f(x)是周期函数,且2|a-b|是其一个周期。
  仿照①的证明过程②的证明留给读者,以下给出③的证明:
  ∵函数y=f(x)图象既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c。用2b-x代x,得
  f(2b-x)+f\[2a-(2b-x)\]=2c。
  又∵函数y=f(x)图象直线x=b成轴对称,
  ∴f(2b-x)=f(x)代入(*),得
  f(x)=2c-f\[2(a-b)+x\]。(**)
  用2(a-b)-x代x,得
  f\[2(a-b)+x\]=2c-f\[4(a-b)+x\],代入(**),得f(x)=f\[4(a-b)+x\],故y=f(x)是周期函数,且4|a-b|是其一个周期。
  二、不同函数对称性的探究
  定理4 函数y=f(x)与y=2b-f(2a-x)的图象关于点A(a,b)成中心对称。










  定理5 ①函数y=f(x)与

函数的对称性及其应用 函数的对称性 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人平平库
  • 文件大小30 KB
  • 时间2022-06-07