二值化阈值自动选取方法
1.双峰法双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。根据这一原理,我们给出了它的实现部分代码如下(Pascal语言描述,以下同):l:=(intLGrayLevel+intRGrayLevel)div2;
end;
迭代所得的阈值分割的图象效果良好。基于迭代的阈值能区分出图像的前景和背景的主要区域所在,但在图像的细微处(如图1中的浅色线条)还没有很好的区分度。
但令人惊讶的是,对某些特定图象,微小数据的变化却会引起分割效果的巨大改变,两者的数据只是稍有变化,但分割效果却反差极大,个中原因还有待进一步研究。
(OTSU法)大津法由大津于1979年提出,对图像Image,记t为前景与背景的分割阈值,前景点数占图像比例为wO,平均灰度为uO;背景点数占图像比例为wl,平均灰度为ul。图像的总平均灰度为:u=w0*u0+w1*u1。从最小灰度值到最大灰度值遍历t,当t使得值g=wO*(uO-u)2+w1*(u1-u)2最大时t即为分割的最佳阈值。对大津法可作如下理解:该式实际上就是类间方差值,阈值
t分割出的前景和背景两部分构成了整幅图像,而前景取值uO,概率为wO,背景取值ul,概率为wl,总均值为u,根据方差的定义即得该式。因方差是灰度分布均匀性的一种度量,方差值越大,说明构成图像的两部分差别越大,当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小,因此使类间方差最大的分割意味着错分概率最小。
直接应用大津法计算量较大,因此我们在实现时采用了等价的公式g=w0*w1*(u0-u1)2。部分计算过程如下:
〃遍历所有灰度值求Maxgo
forintCurrentLevel:=OtointArrLendo
begin
ifintSclGrayLevel[intCurrentLevel]=Othencontinue
else
begin
〃计算当阈值为intCurrentLevel时的g
intCount:=O;
intSumPels:=O;
forintLoop:=OtointCurrentLeveldo
begin
intCount:=intCount+intSclGrayLevel[intLoop];
intSumPels:=intSumPels+intSumPelsArr[intLoop];
end;
w0:=intCount/intSize;
u0:=intSumPels/intCount;
w1:=1-w0;
ifintSize-intCount<>0then
u1:=(intTotalPels-intSumPels)/(intSize-intCount)
else
u1:=0;
RlTempO:=w0*w1*(u0-u1)*(u0-u1);
ifRlTempO>RlMaxOthen
begin
RlMaxO:=RlTempO;
Result:=intCurrentLevel;
end;
end;
我们在测试中发现:大津法选取出来的阈值非常理想,对各种情况的表现都较为良好。虽然它在很多情况下都不是最佳的分割,但分割质量通常都有一定的保障,可以说是最稳
动态阈值 来自淘豆网m.daumloan.com转载请标明出处.