不确定度§1 测量及其误差 1 测量的概念测量: 为确定被测对象的测量值, 首先要选定一个单位, 然后用这个单位与被测对象进行比较, 求出它对该单位的比值──倍数, 这个数即为数值。表示一个被测对象的测量值时必须包含数值和单位两个部分。目前, 在物理学上各物理量的单位, 都采用中华人民共和国法定计量单位, 它是以国际单位制( SI) 为基础的单位。它是以米( 长度)、千克(质量)、秒( 时间)、安培( 电流强度)、开尔文( 热力学温度)、摩尔( 物质的量) 和坎德拉( 发光强度) 作为基本单位, 称为国家单位制的基本单位; 其它量( 如力、能量、电压、磁感应强度等等) 的单位均可由这些基本单位导出,称为国际单位制的导出单位。 2 直接测量、间接测量、等精度测量测量分为直接测量和间接测量。直接测量是指把待测物理量直接与作为标准的物理量相比较, 例如用直尺测某长度, 间接测量是指按一定的函数关系, 由一个或多个直接测量量计算出另一个物理量。同一个人, 用同样的方法, 使用同样的仪器并在相同的条件下对同一物理量进行的多次测量, 叫做等精度测量。以后说到对一个量的多次测量, 如无另加说明, 都是指等精度测量。 3 测量的正确度、精密度和精确度正确度表示测量结果系统误差的大小, 精密度表示测量结果随机性的大小,精确度则综合反映出测量的系统误差与随机性误差的大小。 4 误差的概念测量值 x 与真值 X 之差称为测量误差Δ,简称误差。Δ= x-X 。误差的表示形式一般分为绝对误差与相对误差。绝对误差使用符号±Δ x。x 表示测量结果 x 与直值 X 之间的差值以一定的可能性( 概率) 出现的范围, 即真值以一定的可能性( 概率) 出现在 x-Δx至 x+Δx 区间内。相对误差使用符号β。由于仅根据绝对误差的大小还难以评价一个测量结果的可靠程度, 还需要看测定值本身的大小, 故用相对误差能更直观的表达测定值的误差大小。绝对误差、相对误差和百分误差通常只取 1~2 位数字来表示。 5 误差的分类与来源 1 一般将误差分为系统误差、随机误差、粗大误差三类。(1) 、系统误差在相同的测量条件下多次测量同一物理量时, 误差的绝对值和符号保持恒定, 当测量条件改变时, 它也按某一确定的规律而变化, 这样的误差称为系统误差。系统误差的来源可归结为下几个方面: 仪器误差、调整误差、环境误差、方法(或原理)误差、人员误差。(2) 、随机误差在相同的测量条件下多次测量同一物理量时产生的时大时小、时正时负、以不可预知的方式变化的误差称为随机误差。随机误差产生的原因主要是由于各种不确定的因素所造成的测量值的无规则的涨落。服从正态分布的随机误差具有下面的一些特性: 单峰性:绝对值小的误差出现的概率比绝对值大的误差出现的概率大。对称性:绝对值相等的正负误差出现的概率相同。有界性:有一定测量条件下,误差的绝对值不超过一定限度。抵偿性: 随机误差的算术平均值随着测定次数的增加而越来越趋向于零, (3) 、粗大误差用当时的测量条件不能解释为合理的误差称为粗大误差。其产生的主要原因是实验者在操作、读数、记录、计算等方面的粗心而造成的。含有粗大误差的测量值会明显歪曲客观事实, 因而必须用适当的方法将其剔除(4) 、误差的转化 6 测量结果的最佳值与随机误差的估算(1) 、测量结果的最佳值——算术平均值设对某一物理量进行了几次等精度的重复测量, 所得的一系列测量值分别为: x1、 x2、?xi?xn 。测量结果的算术平均值为: x?1 nn?x i?1i 。 xi 是随机变量,x 也是一个随机变量, 随着测量次数 n 的增减而变化。由随机误差的上述统计特性可 2 以证明, 当测量次数 n 无限增多时, 算术平均值 x 就是接近真值的最佳值。(2) 、随机误差的表示法随机误差的大小常用标准误差、平均误差和极限误差表示。(3) 、随机误差的估算由于真值 X 无法知道, 因而误差△i 也无法计算。但在有限次测量中, 算术平均值 x 是真值的最佳估算值, 且当 n?? 时, x?X 。所以, 我们可以用各次测量值与算术平均值之差——残差或偏差来估算误差。?i?xi?x , υi 是可以计算的,当用υi 来计算标准误差σ时,称之为标准偏差。 a. 标准偏差使用符号σx 表示,其计算式为: ? x???i2n?1 。标准偏差σx 所表示的意义是:任一次测量值 xi 的误差落在( ±σ x) 范围内的概率为 % 。 b. 平均值的标准偏差使用符号?x 表示,其计算式为: ? x??xn???i2n(n?1) , 1 平均值的标准偏差是 n 次测量中任一次测量值标准误差的值X 的可能性是 % 。n 倍。它表示在(x??x) 范围内包含真 7 有限次测量的情况和 t 因子测量次数趋
不确定度 来自淘豆网m.daumloan.com转载请标明出处.