It was last revised on January 2, 2021
七年级上册有理数教案
有理数教案
教学目标
1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0 【讲解答案】 两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.
【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视 (B)
①0是最小的正整数 ②0是最小的有理数
③0不是负数 ④0既是非正数,也是非负数
个 个 个 个
例3 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.
【答案】 不一定,a可能是正数,可能是负数,也可能是0.
【点评】 此题开放性较强.同时,要求学生能用分类的思想对a全面认识.
备选例题
(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.,,,________,,…你的理解是_________.
【点拨】 找出各项数的特点是本题关键所在,第一个数为,后一个数是前一个数的分子,分母都加1所得的数. 【答案】
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
-2-1的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集. 【答案】 答案不唯一,如图1-2-2所示.
2.有理数按正、负可分为 按整数分,可分为
(1)你能自己再制定一个标准,对有理数进行另一种分类吗?
(2)生活中,我们也常常对事物进行分类,请你举例说明.
【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.
(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.
3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?
答案 负分数
课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,,,-3,3,0,50%,
(1)整数集合{ } (2)分数集合{ }
(3)负分数集合{ } (4)非负数集合{ }
(5)有理数集合{ }
2.下列说法正确的是( )
A.整数就是自然数 B.0不是自然数
C.正数和负数统称为有理数 D.0是整数而不是正数
3.某商店出售的三种规格的面粉袋上写着
七年级上册有理数教案 来自淘豆网m.daumloan.com转载请标明出处.