用分解质因数法与短除法求三个数的最小公倍数
某数自己的质因数
二数公有的质因数
例:求14、6、18的最小公倍数。
14=2×7
6=2×3
30=2×3×5
所以,14、6、18的最小公倍数是
2×3×5×7=210的方法通常有直接分类列举、列表、画树形图,这节课我们将继续往下研究
当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法
当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图
用树状图来研究上述问题
开始
第一张牌的牌面的数字
1
2
第二张牌的牌面的数字
1
2
1
2
所有可能出现的结果
(1,1)
(1,2)
(2,1)
(2,2)
例3、同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子点数之和是9
(3)至少有一个骰子的点数为2
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
看老师的板书
将题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?
例4、甲口袋中装有2个相同的小球,它们分别写有字母A和B,乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?
本题中元音字母: A E I 辅音字母: B C D H
A
C
D
E
H
I
H
I
H
I
B
C
D
E
H
I
H
I
H
I
B
C
H
A
C
H
A
C
I
A
D
H
A
D
I
A
E
H
A
E
I
B
C
I
B
D
H
B
D
I
B
E
H
B
E
I
解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等。
(1)满足只有一个元音字母的结果有5个,
则P(1个元音)=
满足只有两个元音字母的结果有4个,
则 P(2个元音)= =
满足三个全部为元音字母的结果有1个,
则 P(3个元音)=
(2)满足全是辅音字母的结果有2个,
则 P(3个辅音)= =
练习:
经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:
(1)三辆车全部继续直行
(2)两辆车右转,一辆车左转
(3)至少有两辆车左转
左
左
直
右
左
直
右
左
直
右
左
直
右
直
左
直
右
左
直
右
左
直
右
左
直
右
右
左
直
右
左
直
右
左
直
右
左
直
右
第一辆车
第二辆车
第三辆车
解:由树形图得,所有可能出现的结果有27个,它们出现的可能性相等。
(1)三辆车全部继续直行的结果有1个,则 P(三辆车全部继续直行)=
(2)两辆车右转,一辆车左转的结果有3个,则
P(两辆车右转,一辆车左转)= =
(3)至少有两辆车左转的结果有7个,则 P(至少有两辆车左转)=
.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;
(2)求出闯关成功的概率
1、掷一枚骰子,落地后4或2朝上的概率为( )
2、一组数据5、7、9、11、5,则选中5的机会是( )
3、3男1女工4人行,从其中任意选出两人性别不同的概率为( )
4、甲乙两袋均有红、黄色球各一个,分别从两袋中任意选出一个球,那么所取得的两球是同色球的概率为( )
5、
用分解质因数法与短除法求三个数的最小公倍数 来自淘豆网m.daumloan.com转载请标明出处.