下载此文档

必修五知识点三角函数.doc


文档分类:中学教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
该【必修五知识点三角函数 】是由【莫比乌斯】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【必修五知识点三角函数 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。正弦定理:在中,、、分别为角、、的对边,为的外接圆的半径,则有
正弦定理的变形公式:①,,;
②,,;③;
④.
3、三角形面积公式:.
4、余弦定理:在中,有,,
.
57、数列:按照一定顺序排列着的一列数.
8、数列的项:数列中的每一个数.
9、有穷数列:项数有限的数列.
10、无穷数列:项数无限的数列.
11、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:an+1>an).
12、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:an+1<an).
13、常数列:各项相等的数列(即:an+1=an).
14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.
15、数列的通项公式:表示数列的第项与序号之间的关系的公式.
16、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.
17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,:。注:看数列是不是等差数列有以下三种方法:
①②2()③(为常数
18、由三个数,,组成的等差数列可以看成最简单的等差数列,,则称为与的等差中项.
19、若等差数列的首项是,公差是,则.
20、通项公式的变形:①;②;③;
④;⑤.
21、若是等差数列,且(、、、),则;若是等差数列,且(、、),则.
22、等差数列的前项和的公式:①;②.③
23、等差数列的前项和的性质:①若项数为,则,且,.
②若项数为,则,且,(其中,).
24、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,:(注:①等比数列中不会出现值为0的项;②同号位上的值同号)
注:看数列是不是等比数列有以下四种方法:
①②(,)
③(为非零常数).
④正数列{}成等比的充要条件是数列{}()成等比数列.
25、在与中间插入一个数,使,,成等比数列,,则称为与的等比中项.(注:由不能得出,,成等比,由,,)
26、若等比数列的首项是,公比是,则.
27、通项公式的变形:①;②;③;④.
28、若是等比数列,且(、、、),则;若是等比数列,且(、、),则.
29、等比数列的前项和的公式:①.②
30、对任意的数列{}的前项和与通项的关系:
[注]:①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).
、余弦定理的推论:,,.
[注]:①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).
②等差{}前n项和→可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
31、;;.
32、不等式的性质:①;②;③;
④,;⑤;
⑥;⑦;
⑧.
33、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数.
34、均值不等式定理:若,,则,即.
35、常用的基本不等式:①;②;③;
④.

必修五知识点三角函数 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人莫比乌斯
  • 文件大小450 KB
  • 时间2022-10-27
最近更新