该【新编应用统计学大题 】是由【Alone-丁丁】上传分享,文档一共【15】页,该文档可以免费在线阅读,需要了解更多关于【新编应用统计学大题 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。新编应用统计学大题
1、品质标志和质量指标有什么不同?品质标志可否加总?
,其标志表现不是数量的,只能用文字表现。质量指标是统计基本指标之一,它反映社会经济现象的相对水平或工作质量。它反映的是统计总体的综合数量特征,可用数值表示,具体表现为相对数和平均数。
品质标志本身不能直接汇总为统计指标,只有对其的标志表现所对应的单位进行总计时才形成统计指标,也并非就是质量指标,而是数量指标。
2、统计指标和标志有何区别与联系?
。也可以说统计指标是指反映实际存在的一定社会总体现象的数量概念和具体数值。我们按一定统计方法对总体各单位标志的标志表现进行登记、核算、汇总、综合,就形成各种说明总体数量特征的统计指标。例如,对某地区国有企业(总体)的每一工厂(总体单位)的总产值(标志)的不同数量(标志值)进行登记核算,最后汇总为全地区的工业总产值(指标)。
统计指标和标志的区别表现为:首先,指标和标志的概念明显不同,标志是说明单位属性的,一般不具有综合的特征。指标是说明总体的综合数量特征的。具有综合的性质。
其次,统计指标分为数量指标和质量指标,它们都是可以用数量来表示的。标志分为数量标志和品质标志,它们不是都可以用数量来表示,品质标志只能用文字表示。
统计指标和标志的联系表现为:
统计指标数值是由各单位的标志值汇总成或计算得来的。数量标志可以综合为数量指标和质量指标,品质标志只有对它的标志表现所对应的单位加以总计才能形成统计指标。总体单位的某一标志往往是总体某一统计指标的名称;
随研究目的不同,指标与标志之间可以互相转化。二者体现这样的关系:指标在标志的基础上形成,指标又是确定标志的依据。
1、统计分组的关键是什么?怎样正确选择分组标志?
分组标志的选择是统计分组的关键,一般应遵循以下原则:
1、应根据研究问题的目的和任务选择分组标志。每一总体都可以按照许多个标志来进行分组,具体按什么标志分组,主要取决于统计研究
抽样调查是从调查对象中随机抽取一部分单位进行调查,并用这部分单位的调查结果推断总体数量特征的一种科学方法。
从时间上看抽样调查和重点调查时经常或一时,典型调查是一时的。从组织形式上看,抽样调查和典型调查是专门调查。重点调查是报表或专门
?
首先,条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的
直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。
其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
最后,条形图主要用于展示分类数据,而直方图则主要用于展示数据型数据
在奥运会男子10米气手枪比赛中,每个运动员首先进行预赛,然后根据预赛总成绩确定进入决赛的8名运动员。决赛时8名运动员再进行10枪射击,然后将预赛成绩加上决赛成绩确定最后的名次。在2008年8月10日举行的第29届北京奥运会男子10米气手枪决赛中,最后获得金牌和银牌的两名运动员10枪的决赛成绩如下表所示:
庞伟
中国
(1)计算两名运动员决赛成绩的中位数。
(2)计算中均数和样本标准差。
(3)比较分析哪个运动员的发挥更稳定。
1、解:(1)中位数的位置=
将两名运动员的射击成绩排序后,得:
庞伟射击成绩的中位数=
秦钟午射击成绩的中位数=
(2)
(3)庞伟的离散系数为:。
秦钟午的离散系数为:。
两名运动员的离散系数差异很小,说明他们发挥的稳定性接近相同。
。市场上有两种比较知名品牌的灯泡,物业公司希望从中选择一种。为此,为检验灯泡的质量,从两个供应商处各随机抽取了60个灯泡的随机样本,进行“破坏性”试验,得到灯泡寿命数据经分组后如下:
700~900
12
4
(1)计算甲供应商灯泡使用寿命的平准数和标准差。
(2)已知乙供应商灯泡使用寿命的平均数为1070小时,。物业
公司应该选择哪个供应商的灯泡?请简要说明你的理由。
2、解:(1)甲供应商灯泡使用寿命的平均数和标准差如下:
(2)物业公司在选择灯泡时,既要考虑平均使用寿命,也要考虑其离散程度。为比较两个供应商灯泡使用寿命的离散程度,需
要计算离散系数,结果如下:
甲供应商:。
乙供应商:。
从离散系数可以看出,两个供应商灯泡使用寿命的离散程度相差不大,但由于甲供应商灯泡的平均使用寿命高于乙供应商,
所以,可考虑选择购买甲供应商提供的灯泡。
,甲班的平均分数为81分,,乙班的考试成绩资料如下:
按成绩分组(分)
学生人数(人)
60以下
60-70
70-80
80-90
90-100
4
10
20
14
2
要求:(1)计算乙班的平均分数和标准差;(2)比较哪个班的分数更有代表性。
3、
(1)乙组的平均成绩:
=75(分)
乙组成绩的标准差:=(分)
(2)V甲=()×100%=%
V乙=()×100%=%
∵V甲<V乙∴甲班的成绩代表性高.
,试根据下列资料分别用调和平均公式和算术平均公式计算平均利息率。某企业所获资金应付利息率及利息额
种数
年利息率(%)
利息额(元)
A
B
C
4
3
5
20
12
30
4、解:
(1)根据调和平均数计算公式计算的平均利息率为:
(2)根据算术平均数计算公式计算的平均利息率为:
5、下表中的数据反映的是1992年到2001年我国职工工资和居民消费价格增长指数:
年份
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
职工工资增长指数(%)
试根据上表数据比较我均增长指数与平均居民消费价格指数的大小。5、解:根据几何平均数公式计算职工工资平均增长指数和平均消费价格指数为:
==
==
可以看出>,因此1992年到2001年间职工工资平均增长速度快于居民消费价格的平均增长速度。
1、某糖果厂用自动包装机装糖,每包重量服从正态分布,某日开工后随机抽查10包的重量如下:494,495,503,506,492,493,498,507,502,490(单位:克)。对该日所生产的糖果,给定置信度为95%,试求:
(1)平均每包重量的置信区间,若总体标准差为5克;
(2)平均每包重量的置信区间,若总体标准差未知;
1、解:n=10,小样本
(1)方差已知,由±zα/2得,(,)
(2)方差未知,由±tα/2得,(,)
2、某广告公司为了估计某地区收看某一新电视节目的居民人数所占比例,要设计一个简单
随机样本的抽样方案。该公司希望有90%的信心使所估计的比例只有2个百分点左右的
误差。为了节约调查费用,样本将尽可能小,试问样本量应该为多大?
2、解:n===1691
,每袋标准重量为100克。现从某天生产的一批产品中随机抽取16包,,。已知食品包重服从正态分布。
(1)确定该种食品平均重量的95%的置信区间。
(2)检验该批食品符合标准的要求?(a=)
3、解:(1)由于总体方差未知时,由小样本的区间估计公式得:
即该种食品平均重量的95%。
(2)依题意提出检验的假设为:。
由于为小样本,且总体标准差未知,所以使用检验,统计量为:
由于,不拒绝,没有证据表明该批食品的重量不符合标准要求。
4、某种感冒冲剂的生产线规定每包重量为12克,超重或过轻都是严重的问题。从过去的
,质检员每2小时抽取25包冲剂称重检验,并做出是否停工的决策。
假设产品重量服从正态分布。
(1)建立适当的原假设和备择假设。
(2)在α=,该检验的决策准则是什么?
(3)如果=,你将采取什么行动?
(4)如果=,你将采取什么行动?
4、(1)H0:μ=12;H1:μ≠12
(2)检验统计量:Z=。在α=,临界值zα/2=,故拒绝域为|z|>。
(3)当=,Z===。
由于|z|=>,拒绝H0:μ=120;应该对生产线停产检查。
(4)当=,Z===-。
由于|z|=<,不能拒绝H0:μ=120;不应该对生产线停产检查。
,该市老年人口老龄化(65岁以上)%。若你作为复旦大学经院暑期社会实践队成员到苏州市对该市人口老龄化问题进行研究,随机调查了400名当地市民,发现有57人年龄在65岁以上。%的看法?(α=)
5
因为是双侧检验,当α=,
由于故接受原假设,%的看法。
1、研究结果表明受教育时间(x)与个人的薪金(y)之间呈正相关关系。研
究人员搜集了不同行业在职人员的有关受教育年数和年薪的12对样本
数据,它们的回归结果如下:
(1)写出回归方程,并对回归方程的显著性进行检验
(2)当受教育年数为15年时,试对其年薪进行置信区间和预测区间估计
<Multiple::>
1、(1)回归方程是=-+
F=>,方程通过了显著性检验,即≠0。
(3)当受教育年数为15年时,其年薪的点估计值为:
=-+×15=(万元)
预测区间为:
=±×
=±
新编应用统计学大题 来自淘豆网m.daumloan.com转载请标明出处.