实验十二聚合物的热谱图分析
在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为:
(1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:
(1)研究聚合物相转变,测定结晶温度Tc、熔点Tm、结晶度XD。结晶动力学参数。
(2)测定玻璃化转变温度Tg。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:
、DSC的原理。
、DSC测定聚合物的Tg、Tc、Tm、XD。
二、基本原理:
图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、控温热电偶和程序温度控制器。气氛控制是为试样提供真空、保护气氛和反应气氛,它包括真空泵、充气钢瓶、稳压阀、稳流阀、流量计等。交换器是由同种材料做成的一对热电偶,将它们反向串接,组成差示热电偶,并分别置于试样和参比物盛器的底部下面,示差热电偶的电压信号,加以放大后送到显示记录。
图12-2
图12-1
参比物应选择那些在实验温度范围内不发生热效应的物质,如α-Al2O3、石英粉、MgO粉等,它的热容和热导率与样品应尽可能相近,当把参比物和试样同置于加热炉中的托架上等速升温时,若试样不发生热效应,在理想情况下,试样温度和参比物温度相等,ΔT=0,差示热电偶无信号输出,记录仪上记录温差的笔仅划一条直线,称为基线。另一支笔记参比物温度变化。而当试样温度上升到某一温度发生热效应时,试样温度与参比物温度不再相等,ΔT≠0,差示热电偶有信号输出,这时就偏离基线而划出曲线。ΔT随温度变化的曲线即 DTA曲线。温差ΔT作纵坐标,吸热峰向下,放热峰向上。炉子的温度Tw以一定的速度变化,基准物的温度Tr在t=0时与Tw相等。但当Tw开始随时间增加时,由于
聚合物的热谱图分析 来自淘豆网m.daumloan.com转载请标明出处.