下载此文档

环路热管研究.docx


文档分类:建筑/环境 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
该【环路热管研究 】是由【minghuihe_666】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【环路热管研究 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。CompanyDocumentnumber:WUUT-WUUY-WBBGB-BWYTT-1982GT
环路热管研究
北京航空航天大学
2014-2015学年第一学期
现代飞行器环境控制新技术
班级SY14055班学号SY1405514
姓名__武飞__成绩_______
航空科学与工程学院
二零一五年一月二十六日
环路热管
环路热管

传统热管简介
传统热管的工作原理
图给出传统热管的结构示意图,沿管长方向依次为蒸发段、绝热段和冷凝段。传统热管利用工质的蒸发和凝结来传递热量,液体工质在蒸发段吸热蒸发,产生的蒸气沿热管中心蒸气通道经绝热段流至冷凝段冷凝放热,凝结的液体在毛细芯产生的毛细压力作用下经
毛细芯从冷凝段回流至蒸发段,如此循环,实现热量从热源至热沉的高效传输,而无需外加动力。
蒸气流向
回流方向
热源
热沉
蒸发段
绝热段
冷凝段
图传统热管示意图图毛细压力驱动工质循环
毛细压力是热管内工质循环的驱动力。如图所示,在热管的蒸发段,液体不断从毛细芯表面蒸发变成蒸气,致使气液界面的曲率半径逐渐减小,气液界面两侧的压差相应增大;而在冷凝段,蒸气不断在毛细芯表面凝结变成液体,致使毛细孔内的气液界面趋于一个平面,曲率半径不断增大,气液界面两侧的压差相应减小。毛细芯提供的毛细压力可表示为:
()
工质在热管内循环的压降主要包括蒸气从蒸发段流向冷凝段的压降,液体从冷凝段回流至蒸发段的压降以及重力对液体流动引起的压降(蒸发器位于冷凝器下端时,重力辅助液体回流,此项为负值;蒸发器位于冷凝器上端时,重力阻碍液体回流,此项为正值)。热管的正常运行要求毛细芯提供的毛细压力与工质循环的总压降相平衡,如式()所示:
()
工质在毛细芯内的接触角具有自调节功能,根据式(),毛细芯提供的毛细压力随着接触角的变化而改变,从而保证式()一直成立。当蒸发段毛细芯内接触角θe为零度,冷凝段毛细芯内接触角θc为90度时,毛细芯提供的毛细压力达到最大值:
()
当热管内工质循环的总压降等于毛细芯所能提供的最大毛细压力时,热管的传热能力达到最大,即达到了毛细限。继续增大热载荷,毛细芯无法提供足够的驱动力,热管将无法正常运行。
传统热管的优点与局限
热管作为一种具有超高导热性能的传热元件在业界已广为人知,在军用和民用领域均得到了广泛应用,如将热管应用于航天器热控制、电子器件冷却以及工业余热回收等。与其它传热元件相比,热管具有很多优点:(1)热管具有极高的传热性能,能以很小的温差远距离传输较大的热量;(2)热管具有优良的等温性,蒸发段与冷凝段壁面温度分别接近蒸发温度和冷凝温度,具有良好的温度一致性;(3)热管内工质的循环由毛细芯产生的毛细压力驱动,无需外加动力;(4)热管具有良好的启动性能,蒸发段与冷凝段两者存在很小温差时,热管便能迅速启动,实现热量的高效传输;(5)对于水平放置的有芯热管,热量传输方向具有可逆性,而对于重力热管,具有热二极管(单向传热)的特性;(6)热管具有良好的环境适应性,可根据热源和热沉的结构形式对热管结构进行一定的改变,如设置多个蒸发段或冷凝段,制成平板热管或分离式热管等。
然而,传统热管也存在一些固有的缺陷,限制了它的传热能力以及广泛应用,主要包括如下几个方面:
首先,传统热管受到使用方位和长度的限制。如图所示,在重力场中,当蒸发段位于冷凝段上方会对热管运行产生不利影响,因为毛细芯可能无法提供足够的毛细压力去克服重力而使冷凝液体回流至蒸发段,即传统热管的反重力能力非常差,尤其对于槽道热管,这是使用方位对传统热管的限制。虽然根据式()可得,毛细压力随着毛细孔孔径的减小而增大,可采用减小毛细孔孔径的办法来增大毛细压力,但是减小毛细孔孔径的同时会使得液体经毛细芯回流的阻力显着增加,甚至抵偿或超过毛细压力增大的部分,因此,减小毛细孔孔径无法彻底解决使用方位的限制。此外,对应一定的热载荷,热管的传热距离存在一定限制,这是因为液体回流阻力随热管长度的增加而增大,工质循环的总压降可能超过毛细芯所能提供的最大毛细压力,造成蒸发段因供液不足而烧干,热管无法正常运行,这是长度的限制。
回流方向
热沉
热源
图传统热管反重力运行的情形
其次,传统热管内有携带现象发生。由于热管内蒸气和液体直接接触且流向相反,导致蒸气对毛细芯内的回流液体施加剪切力。当蒸气流速较高时,可能将气液界面的液体以微滴形式携带回冷凝段,同时液体回流受阻。携带导致所需的工质循环量增大,当液体回流不能满足循环量增加时,蒸发段就会烧干。携带现象是限制传统热管传热能力的因素之一。
最后,传统热管安装不够灵活方便。传统热管的管壳通常是铜、铝合金、不锈钢等金属材料,只允许一定程度的弯曲,在一些复杂的安装场合应用往往受到限制。
环路热管简介
系统构成与工作原理
环路热管(LoopHeatPipe,LHP)一般由蒸发器、冷凝器、储液器以及蒸气和液体管线构成。图给出目前LHP典型的结构形式,与早期结构的显着区别是将液体回流管线引入到蒸发器中心,这段回流管线称为液体引管。
图LHP结构示意图
LHP的工作原理:对蒸发器施加热载荷,工质在蒸发器毛细芯外表面蒸发,产生的蒸气从蒸气槽道流出进入蒸气管线,继而进入冷凝器冷凝成液体并过冷,回流液体经液体管线进入液体干道对蒸发器毛细芯进行补给,如此循环,而工质的循环由蒸发器毛细芯所产生的毛细压力驱动,无需外加动力。
LHP的正常运行要求毛细芯产生的毛细压力必须与工质在回路内循环的总压降相平衡,这些压降主要包括工质在蒸气槽道、蒸气管线、冷凝器、液体管线以及毛细芯内流动产生的摩擦压降以及反重力运行时液体回流所需克服的重力压降,如式()所示:
()
若工质在回路内循环的总压降超过毛细芯所能提供的最大毛细压力,蒸气将击穿毛细芯进入液体干道,工质的正常循环无法维持,LHP将无法正常运行。
LHP在传统热管的基础上发展而来,它继承了传统热管的优点,同时克服了传统热管的固有缺陷和不足。LHP与传统热管最显着的区别为毛细结构的局部化设置,它只在蒸发器吸热区域布置毛细芯,将传统热管毛细芯的毛细抽吸功能与液体回流功能分离。对于LHP,液体经过光滑内壁管线回流,流动压降显着降低,因而可采用能提供很高毛细压力的微米级孔径毛细芯来克服重力的影响,同时不会产生增加液体回流阻力的负面影响。因此,LHP
传热距离远,反重力能力强,解决了传统热管受到使用方位和长度限制的问题。此外,LHP将蒸气通道和液体通道分离,蒸气和液体分别在各自的管线内传输,从而杜绝了携带现象的发生。值得一提的是,蒸气管线和液体管线的分离使得LHP的安装变得灵活方便,不再受限于热源与热沉的方位和距离,这是相对传统热管的又一优势。
部件介绍
◇蒸发器
蒸发器是LHP的核心部件,它具有从热源吸收热量以及提供工质循环动力两项重要功能。经过数十年的改进和发展,目前较为普遍的结构形式如图所示,蒸发器本体主要包括蒸发器壳体、毛细芯和液体引管。毛细芯外侧的轴向槽道称为蒸气槽道(Vaporgroove),毛细芯内侧为液体干道(Liquidcore或Evaporatorcore)。
毛细芯是蒸发器的核心元件,它提供工质循环动力、提供液体蒸发界面以及实现液体供给,同时阻隔毛细芯外侧产生的蒸气进入储液器。目前常用的毛细芯结构如图所示(俄罗斯国家科学院热物理研究所样品)。毛细芯一般是将微米量级的金属粉末通过压制、烧结等工艺成型,形成微米量级的孔径,图给出毛细芯在电镜下的多孔结构图。
蒸气槽道
液体干道
液体引管
毛细芯
储液器
蒸发器
图蒸发器和储液器的结构图
10m
图毛细芯的结构形式 图电镜下的毛细芯多孔结构
毛细芯内液体干道的设置是为了使液体能够沿轴向均匀地对毛细芯进行供液。否则,液体从储液器沿轴向向毛细芯的供液阻力非常大,很容易造成供液不足,导致毛细芯产生轴向温差,甚至出现局部烧干现象。设置液体引管将回流的过冷液体直接引入到蒸发器中心,一方面,回流液体携带的冷量可用来平衡蒸发器透过毛细芯的径向漏热;另一方面,当液体干道内由于蒸发器的漏热产生了气泡或积聚了不凝性气体,从液体引管流出的过冷液体可以依靠自身携带的冷量对气泡进行冷却和消除,同时依靠自身的流动将这些不凝性气体或气泡推出液体干道,防止毛细芯内表面发生气塞现象,提高蒸发器的运行稳定性。
◇冷凝器
LHP系统的热导很大程度上取决于冷凝器与热沉之间的换热性能。早期对LHP的研究大多针对空间应用背景,冷凝器主要以辐射的形式向空间热沉释放热量,因而普遍采用将冷凝器管线嵌入冷凝器板的结构形式,如图所示。地面实验中亦可采用简单的套管式冷凝器,如图所示,使用恒温槽模拟热沉,泵驱动冷媒介质(如水、乙醇等)在套管内循环流动对冷凝器进行冷却。
冷凝器板
冷凝器管线
图平板式冷凝器 图套管式冷凝器
◇传输管线
传输管线包括蒸气管线和液体管线。传输管线一般为细长的光滑内壁管(管径范围1-5mm),起到连接蒸发器和冷凝器的作用,从而构成工质循环流动的回路。工质在光滑内壁管内流动阻力小,且管线柔韧易于弯曲,对复杂应用场合具有良好的适应性。传输管线管径过小会造成工质流动阻力的增大,降低LHP的传热能力;而管径过大会导致回路中的工质充装量以及储液器体积的增大,同时管线的柔韧性变差。因此,应根据实际应用情况对传输管线的管径进行合理的选择。
◇储液器
同传统热管相比,LHP在结构上增设了储液器。储液器位于蒸发器一端且两者直接相连,结构紧凑,如图所示。储液器的设置对LHP具有重要作用:1、通过工质充装量与储液器容积的匹配设计,保证LHP蒸发器毛细芯一直被液体工质所浸润,启动前无需进行任何预处理,可直接对蒸发器施加热载荷来启动LHP;2、LHP运行过程中保证对蒸发器毛细芯的液体储备与供给;3、适应启动或变工况运行过程LHP回路内气液分布的变化与调整,实现工质在传输管线、冷凝器与储液器间的自由转移;4、可容纳蒸发器液体干道内产生的蒸气或回路内存在的不凝性气体,防止液体干道内发生气塞现象而妨碍对蒸发器毛细芯的正常供液;5、通过对储液器施加一定的功率(加热或冷却),可实现对LHP运行温度的精确控制。

环路热管研究 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人minghuihe_666
  • 文件大小983 KB
  • 时间2023-02-16