红外物理特性及应用实验
~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。
【实验目的】
了解红外通信的原理及基本特性。
了解部分材料的红外特性。
了解红外发射管的伏安特性,电光转换特性。
了解红外发射管的角度特性。
了解红外接收管的伏安特性。
【实验原理】
1、红外通信
在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。
红外传输的介质可以是光纤或空间,本实验采用空间传输。
2、红外材料
光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI与材料的衰减系数α,光强I,传播距离dx成正比:
(1)
对上式积分,可得: (2)
上式中L为材料的厚度。
材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。常用的红外光学材料包括:石英晶体及石英玻璃,半导体材料及它们的化合物如锗,硅,金刚石,氮化硅,碳化硅,砷化镓,磷化镓。氟化物晶体、氧化物陶瓷、还有一些硫化物玻璃,锗硫系玻璃等。
光波在不同折射率的介质表面会反射,入射角为零或入射角很小时反射率:
(3)
由(3)式可见,反射率取决于界面两边材料的折射率。由于色散,材料在不同波长的折射率不同。折射率与衰减系数是表征材料光学特性的最基本参数。由于材料通常有两个界面,测量到的反射与透射光强是在两界面间反射的多个光束的叠加效果,如图1所示。反射光强与入射光强之比为:
(4)
透射光强与入射光强之比为:
(5)
原则上,测量出I0、IR、IT,联立(4)、(5)两式,可以求出R与α。下面讨论两种特殊情况下求R与α。
对于衰减可忽略不计的红外光学材料,α=0,e –αL =1,此时,由(4)式可解出:
(6)
对于衰减较大的非红外光学材料,可以认为多次反射的光线经材料衰减后光强度接近零,对图1中的反射光线与透射光线都可只取第一项,此时:
(7)
(8)
由于空气的折射率为1,求出反射率后,可由(3)式解出材料的折射率:
(9)
很多红外光学材料的折射率较大,在空气与红外材料的界面会产生严重的反射。,反射率为14%,锗的折射率为4,反射率为36%。
实验红外物理特性及应用实验 来自淘豆网m.daumloan.com转载请标明出处.