幻灯片1
【例】调查了5个不同小麦品系的株高,结果如下。试判断这5个品系的株高是否存在显著性差异。
5个小麦品系株高(cm)调查结果
株号
品系
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
1
2
3
4
5
和
平均数
幻灯片2
第八章单因素方差分析
One-factor analysis of variance
幻灯片3
本章内容
第一节方差分析简述
第二节固定效应模型
第三节随机效应模型
第四节多重比较
第五节方差分析应具备的条件
幻灯片4
第一节方差分析简述
一、方差分析的一般概念
1、概念
方差分析( analysis of variance,ANOVA):是同时判断多组数据平均数之间差异显著性的统计假设检验,是两组数据平均数差异显著性t 检验的延伸。
ANOVA ,用于推断多个总体均数有无差异。
幻灯片5
单因素方差分析(一种方式分组的方差分析):研究对象只包含一个因素(factor)的方差分析。
单因素实验:实验只涉及一个因素,该因素有a个水平(处理),每个水平有n次实验重复,这样的实验称为单因素实验。
水平(level):每个因素不同的处理(treatment)。
幻灯片6
方差分析
Analysis of Variance (ANOVA )
因素也称为处理因素(factor)(名义分类变量),每一处理因素至少有两个水平(level)(也称“处理组”)。
一个因素(水平间独立) ——单向方差分析
(第八章)
两个因素(水平间独立或相关)——双向方差分析
(第九章)
一个个体多个测量值——重复测量资料的方差分析
ANOVA与回归分析相结合——协方差分析
目的:用这类资料的样本信息来推断各处理组间多个总体均数的差别有无统计学意义。
幻灯片7
【例】随机选取4窝动物,每窝中均有4只幼仔,称量每只幼仔的出生重,结果如下。判断不同窝的动物出生重是否存在显著性差异。
4窝动物的出生重单位:g
1
2
3
4
和
平均数
Ⅳ
Ⅲ
Ⅱ
Ⅰ
窝别
动物号
幻灯片8
2、单因素方差分析的数据格式:
…
yi1
yi2
yi3
…
yij
…
yin
Yi
…
ya1
ya2
ya3
…
yaj
…
yan
y31
y32
y33
…
y3j
…
y3n
y21
y22
y23
…
y2j
…
y2n
y11
y12
y13
…
y1j
…
y1n
1
2
3
…
j
…
n
平均数
Ya
Y3
Y2
Y1
幻灯片9
二、不同处理效应与不同模型
1、方差分析中每一观测值的描述
——线性统计模型
yij:在第i水平下的第j次观测值;
μ:总平均数,是对所有观测值的一个参数;
αi:处理效应,是仅限于对第i次处理的一个参数;
εij:随机误差成分。
幻灯片10
2、①固定效应:由固定因素所引起的效应。
②固定因素:所研究因素各个水平是经过特意选择的,这样的因素称为固定因素。
固定因素的水平可以严格地人为控制,在水平固定之后,它的效应值也是固定的。
③固定模型:处理固定因素所用的模型。
在固定模型中,方差分析所得到的结论只适合于选定的那几个水平,不能将结论扩展到未加考虑的其它水平上。
幻灯片11
3、①随机效应:由随机因素所引起的效应。
②随机因素:所研究因素各个水平是从该因素水平总体中随机抽出的,这样的因素称为随机因素。
随机因素的水平是不能严格人为控制的,在水平确定之后,它的效应值并不固定。
③随机模型:处理随机因素所用的模型。
在随机模型中,方差分析所得到的结论,可以推广到这个因素的所有水平上,是对水平总体的推断。
幻灯片12
第二节固定效应模型
一、线性统计模型
要检验a个处理效应的相等性,就要判断各αi是否为0。
H0:α
i单因素方差分析 来自淘豆网m.daumloan.com转载请标明出处.