飞行时间质谱
m v2 / 2= qe V
其中,v 为离子在电场方向上的速度。
离子以此速度穿过负极板上的栅条,飞向检测器。离子从负极板到达检测器的飞行时间t,就是TOFMS 进行质量分析的判据。在传统的线性TOFMS,离子沿直线飞行到达检测器;而在反射型TOFMS 中,离子经过多电极组成的反射器后反向飞行到达检测器,后者在分辨率方面优于前者。
:最初TOFMS采用电子轰击的方法进行离子化。由电子枪产生的电子电离样品分子使其离解为离子,经加速形成离子束进入飞行区。这种方法可用于气、固、液体样品的分析。其缺点是:1)离子化时间较长,和一般离子的飞行时间数量级相近,容易引起大的误差;2)电子的电离及其进样方式,难以进行大分子样品的分析。目前这种离子化方式多用于小分子的分析。而新的电子发生方式如激光电子枪开始出现。后来脉冲离子发生器应用逐步广泛。用于固体或液体样品的重离子轰击、等离子体解吸(PDMS)及二次离子质谱(SIMS)属于此列。目前脉冲激光技术应用最广,包括激光解吸(LD)、共振激光离子化(RI)、
[4]共振加强单多光子离子化(RES/MPI)以及生化分析中常用的基质辅助激光解吸(MALDI))
等,适用于不同样品的分析。例如共振激光离子化可用于痕量金属元素的分析[3]。REMPI 则擅长复杂有机物的选择性离子化;MALDI的优点在于:
1)可获得高的灵敏度,甚至能检测到离子化区的几个原子;2)对于热不稳定的生物大分子可实现无碎片离子化;3)对固体、液体表面分析,可以很好地控制离子化的位置或深度样品,分析时间大大缩短; 4)可以与不同的离子化方式相结合。为解决多肽、蛋白、寡糖、DNA测序等生命科学领域中的前沿分析课题,需要发展特殊电离技术以及超高分辨、高灵敏度、大质量范围、多级串联的高档
[5][6]: 分辨率低一度是制约TOFMS发展和应用的主要因素。70年代初苏联科学家发明的质量反射器使TOFMS 能量分布问题的解决有了重大突破。该技术成为TOFMS 后来得以长足发展的契机。最初的反射器,是由一组同心的薄板构成,最后一极是一实心板。中间用栅条隔开不同强度的电场。后来发现薄板和栅条的边缘效应引起电场的弯曲,而且离子通过带电珊条时易发生溅射,因此又设计了无栅反射器。同时,为了进一步提高灵敏度和分辨率,节省空间,人们设计了多种新型的反射器如:‘线性反射器’、轴对称离子通道反射器、抛物线型反射器和多缝反射器。Cotter 等人研究的封端(End-Cap)反射型TOFMS可获得好的聚焦效果和高分辨率等等。这些结构的改变都能在某一方面改善反射器的性能,但也存在各自
飞行时间质谱 来自淘豆网m.daumloan.com转载请标明出处.